题目内容

在△ABC中,角A、B、C所对的边分别为a,b,c,且a,b,c成等比数列.
(Ⅰ)若a+c=
3
,B=60°,求a,b,c的值;
(Ⅱ)求角B的取值范围.
分析:(Ⅰ)利用等比数列的性质,可得b2=ac,再结合余弦定理,即可求a,b,c的值;
(Ⅱ)利用余弦定理,结合基本不等式,即可求角B的取值范围.
解答:解:(Ⅰ)∵a,b,c成等比数列,
∴b2=ac-----------------------(2分)
∵B=60°
cosB=
a2+c2-b2
2ac
=
1
2
-----------------------(4分)
联立方程组
b2=ac
a+c=
3
a2+c2-b2
2ac
=
1
2

解得a=b=c=
3
2
-----------------------(6分)
(Ⅱ)cosB=
a2+c2-b2
2ac
=
a2+c2-ac
2ac
-----------------------(8分)
∵a2+c2≥2ac,∴cosB=
a2+c2-ac
2ac
2ac-ac
2ac
=
1
2
-----------------------(10分)
∴0°<B≤60°-----------------------(12分)
点评:本题考查等比数列的性质,考查余弦定理的运用,考查基本不等式,考查学生的计算能力,正确运用余弦定理是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网