题目内容
已知
=(cosx+sinx,sinx).
=(cosx-sinx,2cosx),设f(x)=
•
.
(1)求函数f(x)的单调增区间;
(2)三角形ABC的三个角A,B,C所对边分别是a,b,c,且满足A=
,f(B)=1,
a+
b=10,求边c.
| a |
| b |
| a |
| b |
(1)求函数f(x)的单调增区间;
(2)三角形ABC的三个角A,B,C所对边分别是a,b,c,且满足A=
| π |
| 3 |
| 3 |
| 2 |
分析:(1)f(x)=
sin(2x+
),由-
+2kπ≤2x+
≤
+2kπ即可求得函数f(x)的单调增区间;
(2)由f(B)=1可求得B=
,由正弦定理可设设
=
=
=k,结合题意可得k=4,从而可求得c.
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
(2)由f(B)=1可求得B=
| π |
| 4 |
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
解答:解:(1)∵f(x)=
•
=cos2x+sin2x=
sin(2x+
),…(3分)
∴由-
+2kπ≤2x+
≤
+2kπ得由f(x)递增得:-
+kπ≤x≤
+kπ,k∈Z,
∴函数f(x)的递增区间是[-
+kπ,
+kπ],k∈Z. …(6分)
(2)由f(B)=1⇒sin(2B+
)=
及0<B<π得B=
,…(8分)
设
=
=
=k,则
ksin
+
ksin
=10,
∴
k=10,k=4 …(10分)
所以c=ksinC=4sin(A+B)=4(sin
cos
+cos
sin
)=
+
.…(12分)
| a |
| b |
| 2 |
| π |
| 4 |
∴由-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 8 |
| π |
| 8 |
∴函数f(x)的递增区间是[-
| 3π |
| 8 |
| π |
| 8 |
(2)由f(B)=1⇒sin(2B+
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
设
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
| 3 |
| π |
| 3 |
| 2 |
| π |
| 4 |
∴
| 5 |
| 2 |
所以c=ksinC=4sin(A+B)=4(sin
| π |
| 3 |
| π |
| 4 |
| π |
| 3 |
| π |
| 4 |
| 6 |
| 2 |
点评:本题考查平面向量数量积的坐标表示,考查解三角形,突出考查正弦定理的应用,属于中档题.
练习册系列答案
相关题目