题目内容

关于x、y的方程x2+xy+2y2=29的整数解(x、y)的组数为(  )
A.2组B.3组C.4组D.无穷多组
可将原方程视为关于x的二次方程,将其变形为x2+yx+(2y2-29)=0
由于该方程有整数根,根据判别式△≥0,且是完全平方数
由△=y2-4(2y2-29)=-7y2+116≥0解得y2
116
7
≈16.57
y2 0 1 4 9 16
116 109 88 53 4
显然只有y2=16时,△=4是完全平方数,符合要求
当y=4时,原方程为x2+4x+3=0,此时x1=-1,x2=-3
当y=-4时,原方程为x2-4x+3=0,此时x3=1,x4=3
所以,原方程的整数解为
x 1=-1
y1=4
x 2=-3
y2=4
x 3=1
y3=-4
x 4=3
y4=-4

故选C
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网