题目内容
在等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=
(1)求数列{an}通项an;
(2)记 Tn=
+
+
+…+
,试比较Tn与
的大小.
| S2 |
| b2 |
(1)求数列{an}通项an;
(2)记 Tn=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
| 5 |
| 9 |
分析:(1)根据等比数列的通项公式,结合题意建立关于q和a2的方程组,解之可得a2=6,进而得到{an}的公差d=a2-a1=3,用等差数列通项公式可求得数列{an}的通项;
(2)根据(1)中求出的{an}的通项,结合等差数列求和公式得出Sn=
,从而化简出
=
(
-
),用裂项法求出Tn=
,最后根据n与5的大小关系进行讨论,即可得到Tn与
的大小的几种情况.
(2)根据(1)中求出的{an}的通项,结合等差数列求和公式得出Sn=
| n(3+3n) |
| 2 |
| 1 |
| Sn |
| 2 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| n-5 |
| 9(n+1) |
| 5 |
| 9 |
解答:解:(1)等比数列{bn}的公比为q,结合题意可得
,解之得,q=3或q=-4(负值舍去),a2=6
∴{an}的公差d=a2-a1=3,可得an=3+(n-1)×3=3n.
(2)由(1),得到{an}的前n项和为Sn=
,
∴
=
=
(
-
)
由此可得:Tn=
+
+…+
=
(1-
+
-
+
-
+…+
-
)
=
(1-
)=
.
∴Tn-
=
-
=
令
<0,得n<5,故 n=1,2,3,4;令
=0,得n=5;令
>0,得n>5
∴当n=1,2,3,4时,Tn<
;当n=5时,Tn=
;当 n>5(n∈N+)时,Tn>
.
|
∴{an}的公差d=a2-a1=3,可得an=3+(n-1)×3=3n.
(2)由(1),得到{an}的前n项和为Sn=
| n(3+3n) |
| 2 |
∴
| 1 |
| Sn |
| 2 |
| n(3+3n) |
| 2 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
由此可得:Tn=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 2 |
| 3 |
| 1 |
| n+1 |
| 2n |
| 3(n+1) |
∴Tn-
| 5 |
| 9 |
| 2n |
| 3(n+1) |
| 5 |
| 9 |
| n-5 |
| 9(n+1) |
令
| n-5 |
| 9(n+1) |
| n-5 |
| 9(n+1) |
| n-5 |
| 9(n+1) |
∴当n=1,2,3,4时,Tn<
| 5 |
| 9 |
| 5 |
| 9 |
| 5 |
| 9 |
点评:本题给出等差、等比数列模型,求通项公式并比较{an}的前n项和的倒数和与
的大小.着重考查了等差数列、等比数列的通项公式与求和公式,以及用不等式比较大小等知识,属于中档题.
| 5 |
| 9 |
练习册系列答案
相关题目