题目内容
(09年江宁中学三月)(16分)已知函数
,
(
为常数).函数
定义为:对每个给定的实数
,![]()
(1)求
对所有实数
成立的充分必要条件(用
表示);
(2)设
是两个实数,满足
,且
.若
,求证:函数
在区间
上的单调增区间的长度之和为
(闭区间
的长度定义为
)
解析:(1)由
的定义可知,
(对所有实数
)等价于
(对所有实数
)这又等价于
,即
对所有实数
均成立. (*)
由于
的最大值为
,
故(*)等价于
,即
,这就是所求的充分必要条件
(2)分两种情形讨论
(i)当
时,由(1)知
(对所有实数
)
则由
及
易知
,
再由
的单调性可知,
函数
在区间
上的单调增区间的长度
为
(参见示意图1)
![]()
(ii)
时,不妨设
,则
,于是
当
时,有
,从而
;
当
时,有![]()
从而
;
当
时,
,及
,由方程![]()
解得
图象交点的横坐标为
⑴
显然
,
这表明
在
与
之间。由⑴易知
![]()
综上可知,在区间
上,
(参见示意图2)
![]()
故由函数
及
的单调性可知,
在区间
上的单调增区间的长度之和为
,由于
,即
,得
⑵
故由⑴、⑵得 ![]()
综合(i)(ii)可知,
在区间
上的单调增区间的长度和为
。
练习册系列答案
相关题目