题目内容
已知函数f(x)=
的图象关于原点对称.
(1)求f(x)的表达式;
(2)n≥2,n∈N时,求证:[f(1)-1]|[f(22)-22]+…+[f(n2)-n2]<2;
(3)对n≥2,n∈N,x>0,求证[f(x)]n-f(xn)≥2n-2.
| x2+1 |
| x+c |
(1)求f(x)的表达式;
(2)n≥2,n∈N时,求证:[f(1)-1]|[f(22)-22]+…+[f(n2)-n2]<2;
(3)对n≥2,n∈N,x>0,求证[f(x)]n-f(xn)≥2n-2.
∵f(x)图象关于原点对称
∴f(x)是奇函数,代入特值,f(1)=-f(-1),求得c=0
∴f(x)=
(2)∵n≥2,n∈N
∴f(n2)-n2=
<
=
-
(n≥2)
∴[f(1)-1]+…+[f(n2)-n2]<1+(1-
)+(
-
)+…+(
-
)<2
(3)[f(x)]n-f(xn)=(x+
)n-(xn+
)
=
xn-1
+
xn-2(
)2+…+
x(
)n-1
=
[(
xn-1
+
x(
)n-1)+(
xn-2(
)2+
x2(
)n-1)+…+(
x(
)n-1+
xn-1(
))]
≥
[
2
•2
+…+
•2
]=2n-2
∴[f(x)]n-f(xn)≥2n-2.
∴f(x)是奇函数,代入特值,f(1)=-f(-1),求得c=0
∴f(x)=
| x2+1 |
| x |
(2)∵n≥2,n∈N
∴f(n2)-n2=
| 1 |
| n2 |
| 1 |
| (n-1)n |
| 1 |
| n-1 |
| 1 |
| n |
∴[f(1)-1]+…+[f(n2)-n2]<1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
(3)[f(x)]n-f(xn)=(x+
| 1 |
| x |
| 1 |
| xn |
=
| C | 1n |
| 1 |
| x |
| C | 2n |
| 1 |
| x |
| C | n-1n |
| 1 |
| x |
=
| 1 |
| 2 |
| C | 1n |
| 1 |
| x |
| C | n-1n |
| 1 |
| x |
| C | 2n |
| 1 |
| x |
| C | n-2n |
| 1 |
| x |
| C | n-1n |
| 1 |
| x |
| C | 1n |
| 1 |
| x |
≥
| 1 |
| 2 |
| C | n1 |
xn-1
|
| C | n2 |
xn-2
|
| C | nn-1 |
(
|
∴[f(x)]n-f(xn)≥2n-2.
练习册系列答案
相关题目