7.分子式为C12H22O11和C1864H3012O576N468S21的两种物质最可能是( )
| A. | 糖类和脂质 | B. | 脂质和蛋白质 | C. | 糖类和蛋白质 | D. | 脂质和核酸 |
6.玉米籽粒的颜色有黄色、白色和紫色三种.为了解玉米籽粒颜色的遗传方式,研究者设置了以下6组杂交实验,实验结果如下.
(1)若第五组实验的F1籽粒颜色及比例为紫色:黄色:白色=12:3:1,据此推测玉米籽粒的颜色由两对等位基因控制,第五组中F1紫色籽粒的基因型有6种.第四组F1籽粒黄色与白色的比例应是黄色:白色=3:1;第五组F1中所有黄色籽粒的玉米自交,后代中白色籽粒的比例应是$\frac{1}{6}$.
(2)若只研究黄色和白色玉米籽粒颜色的遗传,发现黄色基因T与白色基因t是位于9号染色体上的一对等位基因,已知无正常9号染色体的花粉不能参与受精作用.现有基因型为Tt的黄色籽粒植株A,其细胞中9号染色体如下图一.

①为了确定植株A的T基因位于正常染色体还是异常染色体上,让其进行自交产生F1.如果F1表现型及比例为黄色:白色=1:1,则说明T基因位于异常染色体上.
②以植株A为父本,正常的白色籽粒植株为母本杂交产生的F1中,发现了一株黄色籽粒植株B,其染色体及基因组成如上图二.该植株的出现可能是由于亲本中的父本减数分裂过程中同源染色体未分离造成的.
③若②中的植株B在减数第一次分裂过程中3条9号染色体会随机的移向细胞两极并最终形成含1条和2条9号染色体的配子,那么以植株B为父本进行测交,后代的表现型及比例黄色:白色=2:3,其中得到的染色体异常植株占$\frac{3}{5}$.
| 第一组 | 第二组 | 第三组 | 第四组 | 第五组 | 第六组 | |
| 亲本 组合 | 纯合紫色× 纯合紫色 | 纯合紫色× 纯合黄色 | 纯合黄色× 纯合黄色 | 黄色×黄色 | 紫色×紫色 | 白色×白色 |
| F1籽 粒颜色 | 紫色 | 紫色 | 黄色 | 黄色、白色 | 紫色、黄色、 白色 | 白色 |
(2)若只研究黄色和白色玉米籽粒颜色的遗传,发现黄色基因T与白色基因t是位于9号染色体上的一对等位基因,已知无正常9号染色体的花粉不能参与受精作用.现有基因型为Tt的黄色籽粒植株A,其细胞中9号染色体如下图一.
①为了确定植株A的T基因位于正常染色体还是异常染色体上,让其进行自交产生F1.如果F1表现型及比例为黄色:白色=1:1,则说明T基因位于异常染色体上.
②以植株A为父本,正常的白色籽粒植株为母本杂交产生的F1中,发现了一株黄色籽粒植株B,其染色体及基因组成如上图二.该植株的出现可能是由于亲本中的父本减数分裂过程中同源染色体未分离造成的.
③若②中的植株B在减数第一次分裂过程中3条9号染色体会随机的移向细胞两极并最终形成含1条和2条9号染色体的配子,那么以植株B为父本进行测交,后代的表现型及比例黄色:白色=2:3,其中得到的染色体异常植株占$\frac{3}{5}$.
5.日本研究人员在最新一期《自然--神经科学》杂志网络版上发表论文说,他们在利用实验鼠进行的实验中,发现一种小核糖核酸与脑神经和视网膜神经的形成有关.进一步研究表明小核糖核酸-124a是一类不编码制造蛋白质的单链核糖核酸分子,主要参与控制基因表达.下列分析不正确的是( )
| A. | 小核糖核酸-124a在编译过程中可作为模板合成蛋白质 | |
| B. | 小核糖核酸-124a可能通过与某些mRNA结合控制基因表达 | |
| C. | 小核糖核酸-124a一定不含有胸腺嘧啶,但可能含有尿嘧啶 | |
| D. | 小核糖核酸-124a可能与神经干细胞的分化有关 |
3.
请分析以下二份资料,回答相关问题.
资料一:用14CO2“饲喂”叶肉细胞,让它在光下进行光合作用.一段时间后,关闭光源,将叶肉细胞置于黑暗中.如图表示在此实验过程中被14C标记的三碳酸(14C3)的浓度变化情况.
(1)实验中,如果提供充足的14CO2,在AB时间段内,14C3浓度将保持相对稳定,因为在14C3被还原的同时,它还可以通过C5(五碳分子或RuBP或核酮糖二磷酸)固定14CO2来合成.
(2)将叶肉细胞置于黑暗中后,在短时间内,14C3浓度迅速上升,主要因为ATP和NADPH(或还原氢)不能生成,使14C3无法被还原;C5仍在固定CO2生成C3.
资料二:下表表示在以下晴朗的4天中,测定马铃薯叶片周围空气中CO2浓度值的结果.
(3)第2列和第3列中的数值都是实际测算得出的,请简要解释第3列数值普遍低于第2列的主要原因白天进行光合作用,叶片吸收CO2.
(4)若在上午8点至下午4点期间测定马铃薯根部土壤中的CO2浓度,与上表中同一时间段的第3列数值相比,你估计结果会如何?高于第3列数值.产生此结果的两点原因,一是根细胞需氧呼吸产生CO2,二是土壤中微生物分解有机物产生CO2.
资料一:用14CO2“饲喂”叶肉细胞,让它在光下进行光合作用.一段时间后,关闭光源,将叶肉细胞置于黑暗中.如图表示在此实验过程中被14C标记的三碳酸(14C3)的浓度变化情况.
(1)实验中,如果提供充足的14CO2,在AB时间段内,14C3浓度将保持相对稳定,因为在14C3被还原的同时,它还可以通过C5(五碳分子或RuBP或核酮糖二磷酸)固定14CO2来合成.
(2)将叶肉细胞置于黑暗中后,在短时间内,14C3浓度迅速上升,主要因为ATP和NADPH(或还原氢)不能生成,使14C3无法被还原;C5仍在固定CO2生成C3.
资料二:下表表示在以下晴朗的4天中,测定马铃薯叶片周围空气中CO2浓度值的结果.
| 日期 | 在下述时间段内,空气中CO2平均浓度(百万分之) | |
| 下午8点至次日凌晨4点 | 上午8点至下午4点 | |
| 7月10日 | 328 | 309 |
| 7月20日 | 328 | 299 |
| 7月30日 | 326 | 284 |
| 8月10日 | 322 | 282 |
(4)若在上午8点至下午4点期间测定马铃薯根部土壤中的CO2浓度,与上表中同一时间段的第3列数值相比,你估计结果会如何?高于第3列数值.产生此结果的两点原因,一是根细胞需氧呼吸产生CO2,二是土壤中微生物分解有机物产生CO2.
2.全能干细胞能够让植物在整个生命周期中产生新的器官,是植物生长发育的源泉和信号调控中心,但是到目前为止,人们对于干细胞组织中心建立和维持的机制仍然知之甚少.中国科学院遗传与发育生物学研究所的李传友课题小组发现了一个在植物根尖干细胞维持中起重要作用的基因,这一研究结果于2010年11月3日作为封面文章发表于国际著名杂志The Plant Cell上.下列说法不正确的是( )
| A. | 植物全能干细胞分化形成不同组织细胞是基因选择性表达的结果 | |
| B. | 植物全能干细胞有细胞周期,全能干细胞分化形成的导管细胞没有细胞周期 | |
| C. | 植物全能干细胞分化形成根、茎、叶的过程一般是不可逆的 | |
| D. | 植物全能干细胞分化形成根、茎、叶的过程体现了细胞的全能性 |
1.经研究发现,从孕妇的羊水中提取的干细胞在实验室培养后形成了骨骼、血管、肌肉、神经以及肝脏等多种人体器官组织.以下有关叙述正确的是( )
| A. | 此过程体现了细胞的全能性 | |
| B. | 神经细胞的分化程度比干细胞的分化程度低 | |
| C. | 提取的干细胞与其形成的肌肉细胞染色体组成不同 | |
| D. | 经培养后形成的多种人体组织细胞中mRNA存在差异 |
19.果蝇的长翅(A)对残翅(a)为显性、刚毛(B)对截毛(b)为显性.为探究两对相对性状的遗传规律,进行如下实验.
(1)若只根据实验一,可以推断出等位基因A、a位于常染色体上;等位基因B、b可能位于X染色体上,也可能位于X和Y染色体上.(填“常”“X”“Y”或“X和Y”)
(2)实验二中亲本的基因型为AAXBYB、aaXbXb;若只考虑果蝇的翅型性状,在F2的长翅果蝇中,纯合体(子)所占比例为$\frac{1}{3}$.
(3)用某基因型的雄果蝇与任何雌果蝇杂交,后代中雄果蝇的表现型都为刚毛.在实验一和实验二的F2中,符合上述条件的雄果蝇在各自F2中所占比例分别为0和$\frac{1}{2}$.
(4)另用野生型灰体果蝇培育成两个果蝇突变品系.两个品系都是由于常染色体上基因隐性突变所致,产生相似的体色表现型--黑体.它们控制体色性状的基因组成可能是:①两品系分别是由于D基因突变为d和d1基因所致,它们的基因组成如图甲所示;②一个品系是由于D基因突变为d基因所致,另一品系是由于E基因突变成e基因所致,只要有一对隐性基因纯合即为黑体,它们的基因组成如图乙或图丙所示.为探究这两个品系的基因组成,请完成实验设计及结果预测.(注:不考虑交叉互换)

I.用为亲本进行杂交,如果F1表现型为黑体,则两品系的基因组成如图甲所示;否则,再用F1个体相互交配,获得F2;
Ⅱ.如果F2表现型及比例为灰体:黑体=9:7,则两品系的基因组成如图乙所示;
Ⅲ.如果F2表现型及比例为灰体:黑体=1:1,则两品系的基因组成如图丙所示.
0 136565 136573 136579 136583 136589 136591 136595 136601 136603 136609 136615 136619 136621 136625 136631 136633 136639 136643 136645 136649 136651 136655 136657 136659 136660 136661 136663 136664 136665 136667 136669 136673 136675 136679 136681 136685 136691 136693 136699 136703 136705 136709 136715 136721 136723 136729 136733 136735 136741 136745 136751 136759 170175
| 亲本组合 | F1表现型 | F2表现型及比例 | ||||||
| 实验一 | 长翅刚毛(♀)×残翅截毛(♂) | 长翅刚毛 | 长翅 刚毛 ♀ 6 | 长翅 刚毛 ♂ :3 | 长翅 截毛 ♂ :3 | 残翅 刚毛 ♀ :2 | 残翅 刚毛 ♂ :1 | 残翅 截毛 ♂ :1 |
| 实验二 | 长翅刚毛(♂)×残翅截毛(♀) | 长翅刚毛 | 长翅 刚毛 ♂ 6: | 长翅 刚毛 ♀ 3: | 长翅 截毛 ♀ 3: | 残翅 刚毛 ♂ 2: | 残翅 刚毛 ♀ 1: | 残翅 截毛 ♀ 1 |
(2)实验二中亲本的基因型为AAXBYB、aaXbXb;若只考虑果蝇的翅型性状,在F2的长翅果蝇中,纯合体(子)所占比例为$\frac{1}{3}$.
(3)用某基因型的雄果蝇与任何雌果蝇杂交,后代中雄果蝇的表现型都为刚毛.在实验一和实验二的F2中,符合上述条件的雄果蝇在各自F2中所占比例分别为0和$\frac{1}{2}$.
(4)另用野生型灰体果蝇培育成两个果蝇突变品系.两个品系都是由于常染色体上基因隐性突变所致,产生相似的体色表现型--黑体.它们控制体色性状的基因组成可能是:①两品系分别是由于D基因突变为d和d1基因所致,它们的基因组成如图甲所示;②一个品系是由于D基因突变为d基因所致,另一品系是由于E基因突变成e基因所致,只要有一对隐性基因纯合即为黑体,它们的基因组成如图乙或图丙所示.为探究这两个品系的基因组成,请完成实验设计及结果预测.(注:不考虑交叉互换)
I.用为亲本进行杂交,如果F1表现型为黑体,则两品系的基因组成如图甲所示;否则,再用F1个体相互交配,获得F2;
Ⅱ.如果F2表现型及比例为灰体:黑体=9:7,则两品系的基因组成如图乙所示;
Ⅲ.如果F2表现型及比例为灰体:黑体=1:1,则两品系的基因组成如图丙所示.