题目内容
7.用NH3催化还原NxOy可以消除氮氧化物的污染.已知:反应Ⅰ:4NH3(g)+6NO(g)?5N2(g)+6H2O(l)△H1
反应Ⅱ:2NO(g)+O2(g)?2NO2(g)△H2 (且|△H1|=2|△H2|)
反应Ⅲ:4NH3(g)+6NO2(g)?5N2(g)+3O2(g)+6H2O(l)△H3
反应I和反应II在不同温度时的平衡常数及其大小关系如下表
| 温度/K | 反应I | 反应II | 已知: K2>K1>K2′>K1′ |
| 298 | K1 | K2 | |
| 398 | K1′ | K2′ |
(2)相同条件下,反应I在2L密闭容器内,选用不同的催化剂,反应产生N2的量随时间变化如图1所示.
①计算0~4分钟在A催化剂作用下,反应速率v(NO)=0.375mol•L-1•min-1.
②下列说法正确的是CD.
A.该反应的活化能大小顺序是:Ea(A)>Ea(B)>Ea(C)
B.增大压强能使反应速率加快,是因为增加了活化分子百分数
C.单位时间内H-O键与N-H键断裂的数目相等时,说明反应已经达到平衡
D.若在恒容绝热的密闭容器中发生反应,当K值不变时,说明反应已经达到平衡
(3)一定条件下,反应II达到平衡时体系中n(NO):n(O2):n(NO2)=2:1:2.在其它条件不变时,再充入NO2气体,分析NO2体积分数--φ(NO2)的变化情况:(填“变大”、“变小”或“不变”)恒温恒压容器,φ(NO2)不变;恒温恒容容器,φ(NO2)变大.
(4)一定温度下,反应III在容积可变的密闭容器中达到平衡,此时容积为3L,c(N2)与反应时间t变化曲线X如下图所示,若在t1时刻改变一个条件,曲线X变为曲线Y或曲线Z.则:
①变为曲线Y改变的条件是加入催化剂.变为曲线Z改变的条件是将容器的体积快速压缩至2L.
②若t2降低温度,t3达到平衡,请在图2中画出曲线X在t2-t4内 c(N2)的变化曲线.
分析 (1)已知K1>K1′,说明随温度升高,K减小,则反应Ⅰ为放热反应,△H1<0;K2>K2′,说明随温度升高,K减小,则反应II为放热反应,△H2<0;反应I-反应II×3得到反应III,则△H3=△H1-3△H2,据此分析;
(2)①已知4分钟时氮气为2.5mol,则消耗的NO为3mol,根据v(NO)=$\frac{△c}{△t}$计算;
②A.相同时间内生成的氮气的物质的量越多,则反应速率越快,活化能越低;
B.改变压强,活化分子百分数不变;
C.单位时间内H-O键断裂表示逆速率,N-H键断裂表示正速率,正逆速率相同则反应已经达到平衡;
D.该反应为放热反应,恒容绝热的密闭容器中,反应时温度会升高,则K会减小;
(3)恒温恒压容器,再充入NO2气体,则与原来的平衡为等效平衡;若恒温恒容容器中,再充入NO2气体,容器中压强增大,则平衡正向移动;
(4)①图象分析曲线X变化为曲线Y是缩短反应达到平衡的时间,最后达到相同平衡状态,体积是可变的恒压容器,说明改变的是加入了催化剂;当曲线X变为曲线Z时N2物质的量浓度增大,可变容器中气体体积和浓度成反比;
②反应III为吸热反应,若t2降低温度,则平衡逆向移动,氮气的浓度减小.
解答 解:(1)已知K1>K1′,说明随温度升高,K减小,则反应Ⅰ为放热反应,△H1<0;K2>K2′,说明随温度升高,K减小,则反应II为放热反应,△H2<0;反应I-反应II×3得到反应III,则△H3=△H1-3△H2,已知|△H1|=2|△H2|,所以△H3=△H1-3△H2=|△H2|>0,即反应III为吸热反应,故答案为:吸热;
(2)①已知4分钟时氮气为2.5mol,则消耗的NO为3mol,所以v(NO)=$\frac{△c}{△t}$=$\frac{\frac{3mol}{2L}}{4min}$=0.375mol•L-1•min-1,故答案为:0.375mol•L-1•min-1;
②A.相同时间内生成的氮气的物质的量越多,则反应速率越快,活化能越低,所以该反应的活化能大小顺序是:Ea(A)<Ea(B)<Ea(C),故A错误;
B.增大压强能使反应速率加快,是因为增大了活化分子数,而活化分子百分数不变,故B错误;
C.单位时间内H-O键断裂表示逆速率,N-H键断裂表示正速率,单位时间内H-O键与N-H键断裂的数目相等时,则消耗的NH3和消耗的水的物质的量之比为4:6,则正逆速率之比等于4:6,说明反应已经达到平衡,故C正确;
D.该反应为放热反应,恒容绝热的密闭容器中,反应时温度会升高,则K会减小,当K值不变时,说明反应已经达到平衡,故D正确;
故答案为:CD;
(3)一定条件下,反应II2NO(g)+O2(g)?2NO2(g)达到平衡时体系中n(NO):n(O2):n(NO2)=2:1:2.在其它条件不变时,恒温恒压条件下,再充入NO2气体,则与原来的平衡为等效平衡,则NO2体积分数与原来平衡相同;若恒温恒容容器中,再充入NO2气体,容器中压强增大,与原来平衡相比较,平衡正向移动,则NO2体积分数变大;
故答案为:不变;变大;
(4)①分析图象可知曲线X变化为曲线Y是缩短反应达到平衡的时间,最后达到相同平衡状态,反应中体积是可变的,已知是恒压容器,说明改变的是加入了催化剂;
当曲线X变为曲线Z时N2物质的量浓度增大,可变容器中气体体积和浓度成反比,曲线X,体积为3L,N2浓度为3mol/L,改变条件当曲线X变为曲线Z时,N2浓度为4.5mol/L,则体积压缩体积为:3:V=4.5:3,V=2L,所以将容器的体积快速压缩至2L符合;
故答案为:加入催化剂;将容器的体积快速压缩至2L;
②反应III为吸热反应,若t2降低温度,则平衡逆向移动,氮气的浓度减小,在t3达到平衡,曲线X在t2-t4内 c(N2)的变化曲线为
,故答案为:
.
点评 本题考查了化学平衡影响因素分析判断、平衡常数的应用、反应速率计算、平衡状态的判断等,题目难度较大,侧重于考查学生对基础知识的综合应用能力.
| t/℃ | 700 | 800 | 830 | 1 000 | 1 200 |
| K | 1.67 | 1.11 | 1.00 | 0.60 | 0.38 |
| A. | 该反应的化学方程式是CO(g)+H2O(g)?CO2(g)+H2(g) | |
| B. | 上述反应的正反应是放热反应 | |
| C. | 若在1L的密闭容器中通入CO2和H2各1mol,5min后温度升高到830℃,此时测得CO2为0.4mol时,该反应达到平衡状态 | |
| D. | 若平衡浓度符合下列关系式:$\frac{c(C{O}_{2})}{3c(CO)}$=$\frac{c({H}_{2}O)}{5c({H}_{2})}$,则此时的温度为1000℃ |
开发和应用前景.
(1)工业上合成甲醇的反应原理为:CO(g)+2H2(g)?CH3OH(g),
如表所列数据是该反应在不同温度下的化学平衡常数(K).
| 温度 | 250℃ | 300℃ | 350℃ |
| K | 2.041 | 0.270 | 0.012 |
②下列措施可以加快反应速率且能提高CO 转化率的是c.
a.再充入CO b.将甲醇液化并及时分离出 c.增大压强d.加入催化剂e.降低温度
③在300℃时,将2mol CO、3mol H2 和2mol CH3OH 充入容积为1L 的密闭容器中,此时反应将向正反应方向进行(填“向正反应方向进行”、“向逆反应方向进行”或“处于平衡状态”).
( 2 ) 以甲醇、氧气为原料,KOH 溶液作为电解质构成燃料电池总反应为:2CH3OH+3O2+4OH-=2CO${\;}_{3}^{2-}$+6H2O,则负极的电极反应式为:CH3OH+8OH--6e-=CO32-+6H2O,随着反应的不断进行溶液的pH减小 (填“增大”“减小”或“不变”).
(3)如果以该燃料电池为电源,石墨作两极电解饱和食盐水,则该电解过程中阳极的电极反应式为:2Cl--2e-=Cl2↑;如果电解一段时间后NaCl 溶液的体积为1L,溶液的pH 为12(25℃下测定),则理论上消耗氧气的体积为56 mL(标况下).
| A. | Cu与Cu2O 的物质的量之比为1:2 | |
| B. | 产生的NO的体积为4.48L | |
| C. | 硝酸的物质的量浓度为2.6mol/L | |
| D. | Cu、Cu2O与硝酸反应后剩余HNO3为0.2mol |
| A. | CCl4和CH2Cl2 | B. | H3O+和NH4+ | C. | CaO2和CaF2 | D. | Ba(OH)2和NaOH |
| A. | 该反应的平衡常数表达式为K=$\frac{{c}^{2}(CO)}{c(C{O}_{2})•c(C)}$ | |
| B. | 550℃时,反应达平衡后CO2的转化率约为5.7% | |
| C. | 650℃时,平衡后再充入体积比为3:2的CO2和CO的混合气体,则平衡不移动 | |
| D. | T℃时,该反应的平衡常数的数值为1 |