1.汽车中应用了许多物理知识,下列说法中正确的是( )
| A. | 导航仪是利用超声波进行定位导航 | |
| B. | 轮胎上的花纹是为了美观好看 | |
| C. | 发动机的做功冲程是将机械能转化为内能 | |
| D. | 安全带是为了防止惯性带来的危害 |
19.小明很善于思考,小明想:浮力是液体对物体向上的托力,而物体间力的作用是相互的,所以物体对液体一定有向下的压力,那么浮力的大小和物体对液体压力的大小有什么关系呢?

(1)如图所示,小明和小红利用烧杯、水、天平、合金圆柱体、细线和弹簧测力计,进行了如下探究:
①在烧杯中盛适量水,用天平测出烧杯和水的总质量m1;
②用弹簧测力计测出圆柱体的重力G;
③如图所示,将圆柱体部分浸入烧杯的水中,静止在某一深度,
记下弹簧测力计的示数F,则圆柱体所受水的浮力为G-F(用弹簧测力计所测得的量来表示);此时向天平的右盘加上适量的砝码,使天平重新平衡,记下天平的读数m2,则圆柱体对水的压力为(m2-m1)g(用天平所测得的量来表示).
(2)表为小明和小红记录的实验数据:(表中h2>h1)
①通过分析表格中的数据,可以得出:浮力的大小等于(选填“大于”、“小于”或“等于”)物体对液体压力的大小.
②由表格中的数据可知,该圆柱体的密度为6.5×103kg/m3.
(1)如图所示,小明和小红利用烧杯、水、天平、合金圆柱体、细线和弹簧测力计,进行了如下探究:
①在烧杯中盛适量水,用天平测出烧杯和水的总质量m1;
②用弹簧测力计测出圆柱体的重力G;
③如图所示,将圆柱体部分浸入烧杯的水中,静止在某一深度,
记下弹簧测力计的示数F,则圆柱体所受水的浮力为G-F(用弹簧测力计所测得的量来表示);此时向天平的右盘加上适量的砝码,使天平重新平衡,记下天平的读数m2,则圆柱体对水的压力为(m2-m1)g(用天平所测得的量来表示).
(2)表为小明和小红记录的实验数据:(表中h2>h1)
| 圆柱的位置 | 圆柱体有重力G/N | 弹簧测力计的示数F/N | 烧杯和水的总质量m1/g | 天平的读数m2/g |
| 圆柱体部分浸入 | 2.6 | 2.4 | 180 | 200 |
| 圆柱体浸没深度h1 | 2.6 | 2.2 | 180 | 220 |
| 圆柱体浸没深度h2 | 2.6 | 2.2 | 180 | 220 |
②由表格中的数据可知,该圆柱体的密度为6.5×103kg/m3.
17.在探究“浮力大小与哪些因素有关”的实验中,某小组同学用如图所示的装置,将同一物体分别逐渐浸入到水和酒精中,为了便于操作和准确收集数据,用升降台调节溢水杯的高度来控制物体排开液体的体积.他们观察并记录了弹簧测力计的示数及排开液体的体积.实验数据记录在如表中.

(1)分析表中数据,实验所用物体的重力为2 N,第一次实验中物体所受的浮力F浮为0.5N.
(2)分析比较实验序号1、2和3(或4、5和6)可初步得出结论:当液体的种类相同时,排开液体的体积越大,浸在液体中的物体受到的浮力越大;分析比较实验序号1、4(或者2、5或者3、6) 可初步得出结论:当排开液体的体积相同时,液体的密度越大,浸在液体中的物体受到的浮力越大.
(3)请你计算出第一次实验中物体排开水受到的重力G排0.5 N.通过比较每次实验中物体受到的浮力和它排开液体的重力的关系,还可以验证阿基米德原理.
(4)本实验在探究“浮力的大小与哪些因素”有关时,选用了不同液体并进行了多次实验,其目的是为了A(选填字母序号:A寻找普遍规律;B取平均值减小误差).
(5)实验中小明同学观察到将同一个物体浸没在密度越大的液体中时,弹簧测力计的示数越小.于是他灵机一动在弹簧测力计下挂一个重1.5N的物块,如图甲所示;当他把物块浸没在水中时,如图乙所示,弹簧测力计的读数为0.5N,他就在0.5N处对应标上1.0g/cm3的字样;当他把物块浸没在酒精中时,如图丙所示,应该在弹簧测力计刻度盘的0.7N处对应标上0.8g/cm3字样,聪明的他就将图甲所示装置改装成了一个能测液体密度的密度秤.
| 液体种类 | 实验 序号 | 物体重力 G重(N) | 弹簧测力计示数F(N) | 物体受到浮力 F浮(M) | 排开液体体积 V排(cm3) |
| 水 ρ水=1.0g/cm3 | 1 | 2 | 1.5 | 50 | |
| 2 | 1.0 | 1.0 | 100 | ||
| 3 | 0.5 | 1.5 | 150 | ||
| 酒精 ρ酒精=0.8g/cm3 | 4 | 2 | 1.6 | 0.4 | 50 |
| 5 | 1.2 | 0.8 | 100 | ||
| 6 | 0.8 | 1.2 | 150 |
(2)分析比较实验序号1、2和3(或4、5和6)可初步得出结论:当液体的种类相同时,排开液体的体积越大,浸在液体中的物体受到的浮力越大;分析比较实验序号1、4(或者2、5或者3、6) 可初步得出结论:当排开液体的体积相同时,液体的密度越大,浸在液体中的物体受到的浮力越大.
(3)请你计算出第一次实验中物体排开水受到的重力G排0.5 N.通过比较每次实验中物体受到的浮力和它排开液体的重力的关系,还可以验证阿基米德原理.
(4)本实验在探究“浮力的大小与哪些因素”有关时,选用了不同液体并进行了多次实验,其目的是为了A(选填字母序号:A寻找普遍规律;B取平均值减小误差).
(5)实验中小明同学观察到将同一个物体浸没在密度越大的液体中时,弹簧测力计的示数越小.于是他灵机一动在弹簧测力计下挂一个重1.5N的物块,如图甲所示;当他把物块浸没在水中时,如图乙所示,弹簧测力计的读数为0.5N,他就在0.5N处对应标上1.0g/cm3的字样;当他把物块浸没在酒精中时,如图丙所示,应该在弹簧测力计刻度盘的0.7N处对应标上0.8g/cm3字样,聪明的他就将图甲所示装置改装成了一个能测液体密度的密度秤.
16.小明在探究“浮力大小与哪些因素有关”的实验中,用到如下器材:分度值为0.1N的弹簧测力计,底面积为5cm2、高度为6cm的实心圆柱体铜块,相同的大烧杯若干,水,密度未知的某种液体,细线等.

(1)小明进行了如图所示的实验:A步骤所示弹簧测力计的示数为2.7N;用弹簧测力计挂着铜块缓慢地浸入液体中不同深度,步骤如图B、C、D、E、F所示(液体均未溢出),并将其示数记录在表中:
(2)在实验步骤B中铜块所受浮力F浮=0.1N.
(3)分析实验步骤A、B、C、D,可以说明浮力大小跟排开液体的体积有关有关:分析实验步骤AEF(或ADF,可以说明浮力大小跟液体的密度有关.
(4)小明用表格中的数据算出了某种液体的密度是1.3g/cm3(结果保留一位小数),还算出了步骤B中铜块下表面受到水的压强是200Pa,并发现步骤B、C、D中铜块下表面受到水的压强随着深度的增加逐渐增大(选填“增大”或“减小”).
(5)小明在步骤B的基础上继续探究:保持铜块下表面所处的位置不变,把弹簧测力计的拉环固定在铁架台上,缓慢向烧杯内加水,发现弹簧测力计的示数逐渐减小(选填“增大”或“减小”):当所加水使铜块刚好浸没时(水未溢出),烧杯底部受到水的压强增加了420Pa.(已知在一定范围内,弹簧受到的拉力每减少0.1N,弹簧的长度就缩短0.1cm)
(1)小明进行了如图所示的实验:A步骤所示弹簧测力计的示数为2.7N;用弹簧测力计挂着铜块缓慢地浸入液体中不同深度,步骤如图B、C、D、E、F所示(液体均未溢出),并将其示数记录在表中:
| 实验步骤 | B | C | D | E | F |
| 弹簧测力计示数F/N | 2.6 | 2.5 | 2.4 | 2.4 | 2.3 |
(3)分析实验步骤A、B、C、D,可以说明浮力大小跟排开液体的体积有关有关:分析实验步骤AEF(或ADF,可以说明浮力大小跟液体的密度有关.
(4)小明用表格中的数据算出了某种液体的密度是1.3g/cm3(结果保留一位小数),还算出了步骤B中铜块下表面受到水的压强是200Pa,并发现步骤B、C、D中铜块下表面受到水的压强随着深度的增加逐渐增大(选填“增大”或“减小”).
(5)小明在步骤B的基础上继续探究:保持铜块下表面所处的位置不变,把弹簧测力计的拉环固定在铁架台上,缓慢向烧杯内加水,发现弹簧测力计的示数逐渐减小(选填“增大”或“减小”):当所加水使铜块刚好浸没时(水未溢出),烧杯底部受到水的压强增加了420Pa.(已知在一定范围内,弹簧受到的拉力每减少0.1N,弹簧的长度就缩短0.1cm)
14.小阳在三个相同的烧杯中,各加入相同的质量的甲、乙、丙三种不同液体,放在三个相同的酒精灯上加热,实验数据记录如表一,通过分析表中的数据可知甲液体的比热容最小.
0 166377 166385 166391 166395 166401 166403 166407 166413 166415 166421 166427 166431 166433 166437 166443 166445 166451 166455 166457 166461 166463 166467 166469 166471 166472 166473 166475 166476 166477 166479 166481 166485 166487 166491 166493 166497 166503 166505 166511 166515 166517 166521 166527 166533 166535 166541 166545 166547 166553 166557 166563 166571 235360
| 加热时问/min | 0 | 1 | 2 | 3 | 4 |
| 甲液体温度/℃ | 20 | 30 | 40 | 50 | 60 |
| 乙液体温度/℃ | 38 | 46 | 54 | 62 | 70 |
| 丙液体温度/℃ | 56 | 62 | 68 | 74 | 80 |