ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÓêµÎÔÚ¿ÕÖÐÊúÖ±ÏÂÂäʱËùÊÜ¿ÕÆø×èÁ¦ÓëËÙ¶È´óСµÄ¶þ´Î·½³ÉÕý±È£¬ÇÒ²»Í¬ÖÊÁ¿µÄÓêµÎËùÊÜ¿ÕÆø×èÁ¦ÓëËÙ¶È´óСµÄ¶þ´Î·½µÄ±ÈÖµÏàͬ£®ÏÖÓÐÁ½µÎÖÊÁ¿·Ö±ðΪm1ºÍm2µÄÓêµÎ´Ó¿ÕÖÐÊúÖ±ÏÂÂ䣬ÔÚÂäµ½µØÃæÖ®Ç°¶¼ÒÑ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÄÇôÔÚÁ½µÎÓêµÎÂäµØÖ®Ç°×öÔÈËÙÖ±ÏßÔ˶¯µÄ¹ý³ÌÖУ¬ÆäÖØÁ¦µÄ¹¦ÂÊÖ®±ÈΪ£º$\sqrt{\frac{{m}_{1}^{3}}{{m}_{2}^{3}}}$£®·ÖÎö ÒÑÖªÓêµÎÏÂÂäʱ¶¼×÷ÔÈËÙÖ±ÏßÔ˶¯£¬ËùÒÔÊܵÄÖØÁ¦ºÍ¿ÕÆø×èÁ¦ÊÇÒ»¶ÔƽºâÁ¦£¬¼´f=mg=kv2£»ÔÙ¸ù¾Ý¹«Ê½P=$\frac{W}{t}$=$\frac{Fs}{t}$=FvÀ´·ÖÎöÇó½â£®
½â´ð ½â£ºÒòΪÓêµÎÂäµ½µØÃæÖ®Ç°¶¼ÒÑ×öÔÈËÙÖ±ÏßÔ˶¯£¬
ËùÒÔÓêµÎÊܵÄÊÇÆ½ºâÁ¦£¬
½áºÏ¶þÁ¦Æ½ºâÌõ¼þºÍÌâÒâ¿ÉµÃ£¬ÓêµÎÊܵ½µÄ×èÁ¦Îªf=mg=kv2£¬
ËùÒÔÓêµÎµÄËÙ¶ÈΪv=$\sqrt{\frac{mg}{k}}$£»
ÓÖÒòΪP=$\frac{W}{t}$=$\frac{Fs}{t}$=Fv£¬ËùÒÔÁ½ÓêµÎÖØÁ¦µÄ¹¦ÂÊÖ®±ÈΪ£º
$\frac{{P}_{1}}{{P}_{2}}$=$\frac{{F}_{1}{v}_{1}}{{F}_{2}{v}_{2}}$=$\frac{{m}_{1}g{v}_{1}}{{m}_{2}g{v}_{2}}$=$\frac{{m}_{1}{v}_{1}}{{m}_{2}{v}_{2}}$=$\frac{{m}_{1}\sqrt{\frac{{m}_{1}g}{k}}}{{m}_{2}\sqrt{\frac{{m}_{2}g}{k}}}$=$\sqrt{\frac{{m}_{1}^{3}}{{m}_{2}^{3}}}$£®
¹Ê´ð°¸Îª£º$\sqrt{\frac{{m}_{1}^{3}}{{m}_{2}^{3}}}$£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éµÄÊÇѧÉú¶ÔƽºâÁ¦ºÍ¹¦ÂʱäÐι«Ê½µÄÀí½âºÍÕÆÎÕ£¬¹Ø¼üÊÇÄܹ»·ÖÎö³öËٶȵÄÒ»°ã±í´ïʽ£¬¶ÔѧÉúµÄÎïÀíÍÆÀíÄÜÁ¦ÒªÇó½Ï¸ß£¬ÓÐÒ»¶¨ÄѶȣ®
| A£® | ÎïÌåµÄÄÚÄÜÔ½´ó£¬·Å³öµÄÈÈÁ¿Ò»¶¨Ô½¶à | |
| B£® | ζÈÏàͬµÄÎïÌ壬ÆäÄÚÄÜÒ»¶¨ÏàµÈ | |
| C£® | ÎïÌåµÄÄÚÄÜÔö¼Ó£¬Ò»¶¨ÊÇÎüÊÕÁËÈÈÁ¿ | |
| D£® | ÎïÌåµÄÄÚÄÜÔö¼Ó£¬ËüµÄζȲ»Ò»¶¨Éý¸ß |