ÌâÄ¿ÄÚÈÝ
9£®·ÖÎö ¢ÙÔÚµ÷½ÚÌìÆ½ºáÁºÆ½ºâʱ£¬Ö¸ÕëÆ«ÏòÓҲ࣬ÓÒ¶ËϳÁ£¬×ó¶ËÉÏÇÌ£¬Æ½ºâÂÝĸÏòÉÏÇ̵ķ½ÏòÒÆ¶¯£»
¢Ú¸ù¾ÝÌâÒâÇó³öСʯ¿éµÄÖÊÁ¿£¬ÀûÓÃÃܶȹ«Ê½ÇóÒç³öË®µÄÌå»ý£¨Ð¡Ê¯¿éµÄÌå»ý£©£¬ÔÙÀûÓÃÃܶȹ«Ê½¼ÆËãСʯ¿éµÄÃܶȣ®
½â´ð ½â£º¢Ùµ±µ÷½ÚÌìÆ½ºáÁºÆ½ºâʱ£¬½«ÓÎÂëÒÆÖÁºáÁº±ê³ß×ó¶ËÁã¿Ì¶ÈÏß´¦£¬·¢ÏÖÖ¸ÕëÍ£ÔÚ·Ö¶ÈÅ̵ÄÓҲ࣬ÓÒ¶ËϳÁ£¬×ó¶ËÉÏÇÌ£¬ÒªÊ¹Æ½ºâÂÝĸÏò×óÒÆ¶¯£»
¢ÚСʯ¿éµÄÖÊÁ¿£ºm=m2+m3-m1£¬
Сʯ¿éµÄÌå»ýºÍÒç³öË®µÄÌå»ýÏàµÈ£¬ÓɦÑ=$\frac{m}{V}$¿ÉµÃ£¬Ð¡Ê¯¿éµÄÌå»ý£ºV=$\frac{{m}_{3}}{{¦Ñ}_{Ë®}}$£¬
ʯ¿éµÄÃܶȣº¦Ñ=$\frac{m}{V}$=$\frac{{m}_{2}+{m}_{3}-{m}_{1}}{\frac{{m}_{3}}{{¦Ñ}_{Ë®}}}$=$\frac{{£¨{m_2}+{m_3}-{m_1}£©{¦Ñ_Ë®}}}{m_3}$£®
¹Ê´ð°¸Îª£º×ó£»$\frac{{£¨{m_2}+{m_3}-{m_1}£©{¦Ñ_Ë®}}}{m_3}$£®
µãÆÀ ±¾Ì⿼²éÁËÌìÆ½µÄµ÷½ÚÒÔ¼°Ãܶȹ«Ê½µÄÁé»îÓ¦Óã®ÀûÓÃÅÅ¿ªË®µÄÖÊÁ¿ÇóСʯ¿éµÄÌå»ý£¬±¾ÌâµÄ¹Ø¼üÊÇÇóСʯ¿éµÄÖÊÁ¿ÓëÌå»ý£®
| A£® | ×¢ÉäÆ÷Îü½øÒ©Òº | B£® | ÓóéË®»ú³éË® | ||
| C£® | ÓÃÎü¹Ü´ÓÆ¿×ÓÀïÎüÒûÁÏ | D£® | ÓÃÊÖÅĵôÒ·þÉϵĻҳ¾ |
| A£® | ¢Ù¢Ú | B£® | ¢Ù¢Ú¢Û | C£® | ¢Ù¢Ú¢Ü | D£® | ¢Ù¢Ú¢Û¢Ü |
£¨¡¡¡¡£©
| A£® | 1N | B£® | 0.5N | C£® | 0N | D£® | 2N |