题目内容
(1)在图中画出重物所受重力的示意图;(如图所示)
(2)设计一个记录实验数据的表格(不必填入数据);
(3)通过探究得出的结论是:
(4)在上述实验的基础上,他们又在斜面上铺上棉布,并测得图示情况中将重物匀速拉至A点时的拉力为1.2N,则此时斜面的机械效率η=
分析:(1)重力的示意图就是用一个带箭头的线段把重力的三要素表示出来,特别注意作用点和方向;
(2)实验研究拉力和斜面倾斜程度的关系,需要记录的物理量有斜面的倾斜程度、物体重力、拉力的大小,根据物理量设计实验表格;
(3)比较木块M支在A、B、C三点时拉力的大小,就会得出拉力与斜面倾斜程度的关系;
(4)斜面的有用功是克服重物重力做功W有用=Gh,总功是克服斜面的摩擦力做功W总=FS,根据根据机械效率的计算公式η=
计算该斜面的机械效率.
(2)实验研究拉力和斜面倾斜程度的关系,需要记录的物理量有斜面的倾斜程度、物体重力、拉力的大小,根据物理量设计实验表格;
(3)比较木块M支在A、B、C三点时拉力的大小,就会得出拉力与斜面倾斜程度的关系;
(4)斜面的有用功是克服重物重力做功W有用=Gh,总功是克服斜面的摩擦力做功W总=FS,根据根据机械效率的计算公式η=
| W有用 |
| W总 |
解答:解:(1)重力的作用点在重物的几何中心上,方向竖直向下,完成后如下图;

(2)根据研究的物理量,实验表格如下表;
(3)重物的重力4N,木块M在A点时拉力为0.8N,在B点时是1N,C点是1.3N,由A点到C点斜面的倾斜程度逐渐变大,拉力也是逐渐变大的;
故答案为:斜面的倾斜程度越大,拉力越大.
(4)有用功即克服重物重力做功W有用=Gh=4N×0.2m=0.8J,总功即克服斜面的摩擦力做功W总=FS=1.2N×1m=1.2J,因此机械效率η=
=
×100%=66.7%.
故答案为:66.7%.
(2)根据研究的物理量,实验表格如下表;
| 实验次数 | 斜面的倾斜程度 | 物体重力G/N | 拉力F/N |
| 1 | |||
| 2 | |||
| 3 |
故答案为:斜面的倾斜程度越大,拉力越大.
(4)有用功即克服重物重力做功W有用=Gh=4N×0.2m=0.8J,总功即克服斜面的摩擦力做功W总=FS=1.2N×1m=1.2J,因此机械效率η=
| W有用 |
| W总 |
| 0.8J |
| 1.2J |
故答案为:66.7%.
点评:本题中需要注意的地方有:(1)重力的方向始终是竖直向下,而不是垂直于斜面向下;(2)弹簧测力计读数时,注意分度值和指针的位置;(3)机械效率的数值为百分数,而不是小数.
练习册系列答案
相关题目