【题目】已知,△ABC为等边三角形,点D为AC上的一个动点,点E为BC延长线上一点,且BD=DE.
(1)如图1,若点D在边AC上,猜想线段AD与CE之间的关系,并说明理由;
图1
(2)如图2,若点D在AC的延长线上,(1)中的结论是否成立,请说明理由.
图2
【题目】下表列出了国外几个城市与北京的时差(带负号的数表示同一时刻比北京时间晚的时间):
城市
巴黎
东京
芝加哥
时差
如果现在的北京时间是下午点,那么现在的芝加哥时间是多少?
在的条件下,冬冬现在想给远在巴黎的父亲打电话,你认为合适吗?
【题目】如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.
(1)如图1,若BD=BA,求证:△ABE≌△DBE;
(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AFAC.
【题目】在一次数学测验中,七年级1班的平均分为分,把高于平均分的部分记作正数.
小明得了分,应记作多少?
小红被记作分,她实际得分多少?
小英得了分,应记作多少?
小明和小红相差多少分?
【题目】如图,在ABCD中,过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,AE∶AD=4∶5,求AF的长.
【题目】下列各数分别填在相应的集合里:
(相邻两个之间依次多一个).
正数集合:{ ···}
非负整数集合:{ ···}
分数集合:{ ···}
无理数集合:{ ···}
【题目】如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣1,2)、B(2,1)、C(4,5).
(1)画出△ABC关于x对称的△A1B1C1;
(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并求出△A2B2C2的面积.
【题目】阅读型综合题
对于实数我们定义一种新运算(其中均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为,其中叫做线性数的一个数对.若实数 都取正整数,我们称这样的线性数为正格线性数,这时的叫做正格线性数的正格数对.
(1)若,则 , ;
(2)已知,.若正格线性数,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.
【题目】某检修站,甲小组乘坐一辆汽车,沿东西方向的公路进行检修线路,约定向东为正,从地出发到收工时,行走记录为(单位:): +8,- 2, -13, -1, +10.同时,乙小组也从地出发, 沿南北方向的公路检修线路,约定向北为正,行走记录为: -7, +9,- 2, +8,- 6.
(1)分别计算收工时,甲,乙两组各在地的哪一边,分别距离地多远?
(2)若每千米汽车汽油消耗为0.3,求出发到收工时两组各耗油多少升?
【题目】如图:公路旁有两个高度相等的路灯AB、CD.数学老师杨柳上午上学时发现路灯B在太阳光下的影子恰好落到里程碑E处,他自己的影子恰好落在路灯CD的底部C处.晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在里程碑E处.
(1)在图中画出杨老师的位置(用线段FG表示),并画出光线,标明(太阳光、灯光);
(2)若上午上学时候高1米的木棒的影子为2米,杨老师身高为1.5米,他离里程碑E恰5米,求路灯高.