【题目】如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是( )
A. 0 B. 1 C. 2 D. 3
【题目】如图,在矩形ABCD中,AB=8,AD=4,点E、F分别在线段AD、AB上,将△AEF沿EF翻折,使得点A落在矩形ABCD内部的P点,连接PD,当△PDE是等边三角形时,BF的长为_____.
【题目】对于每个正整数,设表示的末位数字.例如:(的末位数字),(的末位数字),(的末位数字),…则的值为( )
A.4040B.4038C.0D.4042
【题目】如图,四边形ABCD的两条对角线AC、BD互相垂直, A1B1C1D1, 是四边形ABCD的中点四边形,如果AC=8, BD=10,那么四边形A1B1C1D1,的面积为_________.
【题目】如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②∠EAG=450;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
【题目】如图,正方形ABCD的面积为12,△ABC是等边三角形,点E在正方形ABCD内,对角线AC上有一点P使PE+PD的和最小,这个最小值为( )
A. B. C. 3 D.
【题目】根据研究弹簧长度与重物重量的实验表格,下列说法错误的是( )
A. 自变量是重物重量x,因变量是弹簧长度yB. 弹簧原长8cm
C. 重物重量每增加1kg,弹簧长度伸长4cmD. 当悬挂重物重量为6kg时,弹簧伸长12cm
【题目】如图所示,在坐标平面内,点O是坐标原点,A(0,6)、B(2,0),且∠OBA=60°,将△OAB沿直线AB翻折,得到△CAB,点O与点C对应。
(1)求点C的坐标;
(2)动点F从点O出发,以2个单位长度/秒的速度沿折线O—A—C向终点C运动,设△FOB的面积为S(S≠0),点F的运动时间为t秒,求S与t的关系式,并直接写出t的取值范围;
(3)在(2)的条件下,过点B作x轴垂线,交AC于点E,在点F的运动过程中,当t为何值时,△BEF是以BE为腰的等腰三角形?
【题目】在△ABC中,D、E分别是边AB、BC上的点,AE和CD交于点F,且∠CFE=∠B。
(1)如图1,求证:∠AEC=∠CDB;
(2)如图2,过点C作CG⊥AC,交AB于点G,CD⊥CB,∠ACD =∠CAB-∠B,求证:AC=GC;
(3)如图3,在(2)的条件下,CE+CD=AE,CG=,求线段BC的长。
【题目】已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.
(1)如图①,当∠BOC=40°时,求∠DOE的度数;
(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;
(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE的度数(不必写过程).