【题目】已知:如图,,,点在上,.
求证:(1);(2)∥.
【题目】如图,BE⊥AC、CF⊥AB于点E、F,BE与CF交于点D,DE=DF,连接AD.
求证:(1)∠FAD=∠EAD;
(2)BD=CD.
【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C( ,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.
其中正确结论的序号是_______________.(在横线上填上你认为所有正确结论的序号)
【题目】如图,在△ABC中,CD⊥AB于点D,CE是∠ACB的平分线,∠A=20°,∠B=60°,求∠BCD和∠ECD的度数.
【题目】(2017·达州)下列命题是真命题的是( )
A. 若一组数据是1,2,3,4,5,则它的方差是3
B. 若分式方程有增根,则它的增根是1
C. 对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形
D. 若一个角的两边分别与另一个角的两边平行,则这两个角相等
【题目】如图,在矩形ABCD中,AB=8,AD=10,点E是CD的中点,将这张纸片依次折叠两次:第一次折叠纸片使点A与点E重合,如图②,折痕为MN,连接ME,NE;第二次折叠纸片使点N与点E重合,如图③,点B落到B′处,折痕为HG,连接HE,则下列结论:①ME∥HG;②△MEH是等边三角形;③∠EHG=∠AMN;④tan∠EHG=.其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
【题目】已知,△ABC中,∠BAC=90°,AB=AC.
(1)如图1,若AB=8,点D是AC边上的中点,求S△BCD;
(2)如图2,若BD是△ABC的角平分线,请写出线段AB、AD、BC三者之间的数量关系,并说明理由;
(3)如图3,若D、E是AC边上两点,且AD=CE,AF⊥BD交BD、BC于F、G,连接BE、GE,求证:∠ADB=∠CEG.
【题目】无人机技术我国逐渐发展迅速,全球首款吨位级货运无人机从设计到总装在四川成都双流区完成,现有两架航拍无人机:1号无人机从海拔5米处出发,以1米/秒的速度上升。与此同时,2号无人机从海拔15米处出发,以0.5米/秒的速度上升(设无人机上升时间为秒)。
(1)求出1号无人机所在位置的海拔(米)与之间的关系式和2号无人机所在位置的海拔(米)与之间的关系式?
(2)在某一时刻两架无人机能否位于同一高度?如果能,请求出无人机上升的时间与高度?如果不能,请说明理由.
(3)上升多少时间,两架无人机所在位置的海拔相差5米.
【题目】如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数是( )
A. 400 B. 450 C. 500 D. 600