【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.

【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.

本题解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴点A的坐标为(3,3).

设反比例函数的解析式为y= (k≠0),

∴3,∴k=9,则这个反比例函数的解析式为y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由题意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S阴影=S扇形AOA′-SODC=6π.

点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.

型】解答
束】
26

【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.

① 求证:△OCP∽△PDA;

② 若△OCP与△PDA的面积比为1:4,求边AB的长.

(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

【题目】如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.

(1)求证:AC平分∠DAB;

(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;

(3)如图②,连接OD交AC于点G,若,求sinE的值.

【答案】(1)证明见解析;(2)CF=;(3) sinE=.

【解析】分析:(1)连接OC,由平行线的判定定理、性质以及三角形中的等角对等边的原理即可求证。(2)由(1)中结论,利用特殊角的三角函数值可求出∠E=30CF的长度。(3)连接OC,即可证得△OCG∽△DAG,△OCE∽△DAE,根据相似三角形的对应边成比例,可得EOAO的比例关系,又因为OC=OA,所以在RT△OCE中由三角函数的定义即可求解。

本题解析:(1)连接OC,如图①.∵OC切半圆O于C,∴OC⊥DC,又AD⊥CD.∴OC∥AD.∴∠OCA=∠DAC.∵OC=OA,∴∠OAC=∠ACO.∴∠DAC=∠CAO,即AC平分∠DAB.

(2)在Rt△OCE中,∵OC=OB=OE,∴∠E=30°.

∴在Rt△OCF中,CF=OC·sin60°=2×.

(3)连接OC,如图②.∵CO∥AD,∴△CGO∽△AGD.∴.不妨设CO=AO=3k,则AD=4k.又△COE∽△DAE,∴.∴EO=9k.在Rt△COE中,sinE=.

型】解答
束】
25

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【题目】如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)

【答案】钢缆AC的长度为1 000米.

【解析】试题分析:过点AAE⊥CC′于点E,交BB′于点F,过点BBD⊥CC′于点D,分别求出AECE,利用勾股定理求解AC即可.

试题解析:过点AAE⊥CC′于点E,交BB′于点F,过点BBD⊥CC′于点D

△AFB△BDC△AEC都是直角三角形,四边形AA′B′FBB′C′DBFED都是矩形,

∴BF=BB′-B′F=BB′-AA′=310-110=200

CD=CC′-C′D=CC′-BB′=710-310=400

∵i1=12i2=11

∴AF=2BF=400BD=CD=400

∵EF=BD=400DE=BF=200

∴AE=AF+EF=800CE=CD+DE=600

RtAEC中,AC=(米).

答:钢缆AC的长度是1000米.

考点:解直角三角形的应用-坡度坡角问题.

型】解答
束】
24

【题目】如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.

(1)求证:AC平分∠DAB;

(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;

(3)如图②,连接OD交AC于点G,若,求sinE的值.

 0  353116  353124  353130  353134  353140  353142  353146  353152  353154  353160  353166  353170  353172  353176  353182  353184  353190  353194  353196  353200  353202  353206  353208  353210  353211  353212  353214  353215  353216  353218  353220  353224  353226  353230  353232  353236  353242  353244  353250  353254  353256  353260  353266  353272  353274  353280  353284  353286  353292  353296  353302  353310  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网