【题目】如图,三角形纸片中,AB=5cm,AC=7cm,BC=9cm.沿过点B的直线折叠这个三角形,使点A落在BC边上的点E处,折痕为BD,则△DEC的周长是________cm.
【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )
A. 函数有最小值
B. 对称轴是直线x=
C. 当x<,y随x的增大而减小
D. 当﹣1<x<2时,y>0
【题目】如图,已知反比例函数y=-与一次函数y=kx+b的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2.
求:(1)一次函数的解析式;
(2)△AOB的面积.
【题目】如图,反比例函数的图象与一次函数y=mx+b的图象交于A(1,3),B(n,-1)两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.
【题目】阅读下列材料,完成下列各题:平面内的两条直线有相交和平行两种位置关系。
(1)如图1,若,点P在AB,CD之间,求证:∠BPD=∠B+∠D;
(2)在图1中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图2,请写出,∠B,,之间的数量关系并说明理由;
(3)利用(2)的结论,求图3中+∠G=n×90°,则n=____.
【题目】如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=.
(1)求反比例函数的解析式;
(2)若P(, )、Q(, )是该反比例函数图象上的两点,且时, ,指出点P、Q各位于哪个象限?并简要说明理由.
【题目】为了加强建设“经济强、环境美、后劲足、群众富”的实力城镇,聚力脱贫攻坚,全面完成脱贫任务,某乡镇特制定一系列帮扶计划。现决定将A、B两种类型鱼苗共320箱运到某村养殖,其中A种鱼苗比B种鱼苗多80箱。
(1)求A种鱼苗和B种鱼苗各多少箱?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批鱼苗全部运往同一目的地。已知甲种货车最多可装A种鱼苗40箱和B种鱼苗10箱,乙种货车最多可装A种鱼苗和B种鱼苗各20箱。如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元,则安排甲、乙两种货车有哪几种不同的方案?并说明选择哪种方案可使运输费最少?最少运输费是多少元?
【题目】如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A′B′C′,点C的对应点是直线上的格点C′.
(1)画出△A′B′C′.
(2)△ABC两次共平移了___个单位长度。
(3)试在直线上画出点P,使得由点A′、B′、C′、P四点围成的四边形的面积为9.
【题目】风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
【题目】如图,点是等边三角形内一点,将绕点 .按顺时针方向旋转得, 连接.
(1)求证:是等边三角形;
(2)当时, 试判断的形状,并说明理由;
(3)探究:当为多少度时,是等腰三角形.