【题目】如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
【题目】如图,在正方形ABCD中,连接BD,点O是BD的中点,若M,N是边AD上的两点,连接MO,NO,并分别延长交边BC于两点M′,N′,则图中的全等三角形共有( )A.2对B.3对C.4对D.5对
【题目】已知:如图,△ABC 中,AD⊥BC 于点 D,BE 是∠ABC 的平分线,若∠DAC=30°,∠BAC=80°,求:∠AOB 的度数.
【题目】数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是宽为a,长为b的长方形。用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形。
(1)请用两种不同的方式表示图2大正方形的面积。
方式1: ;
方式2: .
(2)观察图2,请你写出下列三个代数式:,,之间的等量关系。
(3)类似地,请你用图1中的三种纸片拼一个图形验证:
(4)根据(2)题中的等量关系,解决如下问题:
①已知:,,求的值;
②已知,求的值。
【题目】一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是( )A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大
【题目】如图,抛物线y=ax2+ x+1(a≠0)与x轴交于A,B两点,其中点B坐标为(2,0).(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=﹣x上的动点,当直线OP平分∠APB时,求点P的坐标;(3)如图2,在(2)的条件下,点C是直线BP上方的抛物线上的一个动点,过点C作y轴的平行线,交直线BP于点D,点E在直线BP上,连结CE,以CD为腰的等腰△CDE的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
【题目】综合题(1)【问题提出】如图1.△ABC是等边三角形,点D在线段AB上.点E在直线BC上.且∠DEC=∠DCE.求证:BE=AD;(2)【类比学习】如图2.将条件“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变.判断线段AB,BE,BD之间的数量关系,并说明理由.(3)【扩展探究】如图3.△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在线段AB的反向延长线上,点E在直线BC上,且∠DEC=∠DCE,【类比学习】中的线段AB、BE、BD之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出线段AB,BE,BD之间的数量.
【题目】为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
【题目】我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边。
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称;
(2)如图,将绕顶点B顺时针方向旋转,得到,连接AD、DC,,求证:,即四边形ABCD是勾股四边形。
【题目】如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.
(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:
(2)画出AB边上的中线CD;
(3)画出BC边上的高线AE;
(4)△A′B′C′的面积为 。