【题目】某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.
(1)求y关于x的函数解析式,并写出x的取值范围.
(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?
【题目】如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠CAB=90°,点A,点B的坐标分别为A(0,a),B(b,0),且a,b满足a2+b2﹣4a﹣8b+20=0,AC与x轴交于点D.
(1)求△AOB的面积;
(2)求证:点D为AC的中点;
(3)点E为x轴的负半轴上的动点,分别以OA,AE为直角边在第一、二象限作等腰直角三角形△OAN和等腰直角三角形△EAM,连接MN交y轴于点P,试探究线段OE与AP的数量关系,并证明你的结论.
【题目】若一个正整数a可以表示为连续的两个奇数的平方差的形式,如:8=32﹣12,16=52﹣32,24=72﹣52,……,我们则称形如8,16,24这样的正整数a为“奇特数”.
(1)请写出最小的三位“奇特数”,并表示成连续的两个奇数的平方差的形式;
(2)求证:任意一个“奇特数”都是8的倍数;
(3)若一个三位数b为“奇特数”,其百位和个位上的数字相同,十位上的数字比个位上的数字大m(m为正整数),求满足条件的所有三位“奇特数”.
【题目】已知二次函数y=m (x﹣1)( x﹣4)的图象与x轴交于A,B两点(点A在点B的左边),顶点为C,将该二次函数的图象关于x轴翻折,所得图象的顶点为D.若四边形ACBD为正方形,则m的值为 .
【题目】如图,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为_______.
【题目】如图,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,B、C、E三点共线,连接DC,点F为CD上的一点,连接AF.
(1)若BE平分∠AED,求证:AC=EC;
(2)若∠DAF=∠AEC,求证:BE=2AF.
【题目】小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:
(1)小红家到舅舅家的路程是______米,小红在商店停留了______分钟;
(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分
(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?
【题目】2018年我市的脐橙喜获丰收,脐橙一上市,水果店的陈老板用2400元购进一批脐橙,很快售完;陈老板又用6000元购进第二批脐橙,所购件数是第一批的2倍,但进价比第一批每件多了20元.
(1)第一批脐橙每件进价多少元?
(2)陈老板以每件120元的价格销售第二批脐橙,售出60%后,为了尽快售完,决定打折促销,要使第二批脐橙的销售总利润不少于480元,剩余的脐橙每件售价最低打几折?(利润=售价﹣进价)
【题目】如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为______.
【题目】如图,△ABC的三个顶点的坐标分别是A(3,3),B(1,1),C(4,–1).
(1)直接写出点A、B、C关于x轴对称的点A1、B1、C1的坐标;A1(__________)、B1(__________)、C1(__________).
(2)在图中作出△ABC关于y轴对称的图形△A2B2C2.
(3)求△ABC的面积.