【题目】如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为( )
A. B. C. D. 2
【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
(1)请画出平移后的△DEF,并求△DEF的面积=
(2)若连接AD、CF,则这两条线段之间的关系是_________________;
(3)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP.
【题目】二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为( ,﹣2);⑤当x< 时,y随x的增大而减小;⑥a+b+c>0正确的有( )A.3个B.4个C.5个D.6个
【题目】如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG//BC,且于G,下列结论:①;②平分;③;④;其中正确的结论是( )
A.只有①③B.只有①③④C.只有②④D.①②③④
【题目】如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是( )A.3 B.10 C.9D.9
【题目】如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是( )A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行
【题目】下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程
,其中正确的是( )
【题目】下列计算正确的是( )A. =8B.(x+3)2=x2+9C.(ab3)2=ab6D.(π﹣3.14)0=1
【题目】如图1,抛物线y=ax2+bx+ ,经过A(1,0)、B(7,0)两点,交y轴于D点,以AB为边在x轴上方作等边△ABC.(1)求抛物线的解析式;(2)在x轴上方的抛物线上是否存在点M,是S△ABM= S△ABC?若存在,请求出点M的坐标;若不存在,请说明理由;(3)如图2,E是线段AC上的动点,F是线段BC上的动点,AF与BE相交于点P.①若CE=BF,试猜想AF与BE的数量关系及∠APB的度数,并说明理由;②若AF=BE,当点E由A运动到C时,请直接写出点P经过的路径长(不需要写过程).
【题目】将1,2,3,……,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是___________