【题目】函数y=x2+bx+c与y=x的图象如图所示,有以下结论: ①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为( )A.1个B.2个C.3个D.4个
【题目】已知点、在的边上,,,为了判断与的大小关系,请你填空完成下面的推理过程,并在空白括号内,注明推理的根据.
解:作,垂足为
∵,
∴是________三角形,
∴________
又∵,
∴________,即________;
又∵________(自己所作),
∴是线段________的垂直平分线;
∴________.
【题目】荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.
(1)求购买该品牌一个台灯、一个手电筒各需要多少元?
(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?
【题目】如图,△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);
(2)连接BD,求证:BD平分∠CBA.
【题目】如图,已知抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.(1)直接写出点D的坐标和直线AD的解析式;(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.
【题目】计算:
(1)|-2|÷(-)+(-5)×(-2); (2)(-+)×(-24);
(3)15÷(-+); (4)(-2)2-|-7|-3÷(-)+(-3)3×(-)2.
【题目】如图,直线l与⊙O相离,过点O作OA⊥l,垂足为A,OA交⊙O于点B,点C在直线l上,连接CB并延长交⊙O于点D,在直线l上另取一点P,使∠PCD=∠PDC. (1)求证:PD是⊙O的切线;(2)若AC=1,AB=2,PD=6,求⊙O的半径r和△PCD的面积.
【题目】如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为 .
【题目】把下列各数填在相应的大括号里:
-3,0.2,0,-|+|,-5%,-,|-9|,-(-1),-23,+3.
(1)正整数集合:{ …};
(2)负分数集合:{ …};
(3)负数集合:{ …};
(4)整数集合:{ …};
(5)分数集合:{ …};
(6)非负数集合:{ …}.
【题目】如图,已知中, , , ,D是AB边的中点,E是AC边上一点,联结DE,过点D作交BC边于点F,联结EF.
(1)如图1,当时,求EF的长;
(2)如图2,当点E在AC边上移动时, 的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出的正切值;
(3)如图3,联结CD交EF于点Q,当是等腰三角形时,请直接写出BF的长.