【题目】如下图所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.DE=6cm,AD=9cm,则BE的长是( )
A. 6cm B. 1.5cm C. 3cm D. 4.5cm
【题目】如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣ ;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是( )A.2B.3C.4D.5
【题目】下列函数中,对于任意实数x1 , x2 , 当x1>x2时,满足y1<y2的是( )A.y=﹣3x+2B.y=2x+1C.y=2x2+1D.y=﹣
【题目】如图,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度数:
(2)求证:DM∥BC.
【题目】完成下列证明过程:
如图,∠1=∠2,AC平分∠DAB.
求证:DC∥AB.
证明:因为AC平分∠DAB(已知),
所以∠1=∠3(_____________ ).
又因为∠1=∠2(____________),
所以∠2=∠3(______________),
所以DC∥AB(________________).
【题目】如图,在下列条件中,不能证明△ABD≌△ACD的条件是( )
A. ∠B=∠C,BD=DC B. ∠ADB=∠ADC,BD=DC
C. ∠B=∠C,∠BAD=∠CAD D. BD=DC,AB=AC
【题目】如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD且与EF交于点O,那么图中与∠AOE相等的角有( )
A. 3个 B. 4个 C. 5个 D. 6个
【题目】为了顺利通过“国家文明城市”验收,市政府拟对部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.
(1)甲、乙两个工程队单独完成此项工程各需多少天?
(2)若甲工程队每天的费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完成工程,又能使工程费用最少?
【题目】(1)通过计算下列各式的值探究问题:
①= ;= ;= ;= .
探究:对于任意非负有理数a,= .
②= ;= ;= ;= .
探究:对于任意负有理数a,= .
综上,对于任意有理数a,= .
(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:--+|a+b|.
【题目】定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y= (x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是( ,3),点N的坐标是( ,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3, ),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.