【题目】某学校有一块长方形活动场地,长为米,宽比长少米,实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加米.
(1)求活动场地原来的面积是多少平方米.(用含的代数式表示)
(2)若,求活动场地面积增加后比原来多多少平方米.
【题目】如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为 的线段的概率为( ) A.B.C.D.
【题目】下列命题,真命题是( ) A.如图,如果OP平分∠AOB,那么,PA=PBB.三角形的一个外角大于它的一个内角C.如果两条直线没有公共点,那么这两条直线互相平行D.有一组邻边相等的矩形是正方形
【题目】如图:已知△ABC是等边三角形,D、E、F分别是AB、AC、BC边的中点,M是直线BC上的任意一点,在射线EF上截取EN,使EN=FM,连接DM、MN、DN.
(1)如图①,当点M在点B左侧时,请你按已知要求补全图形,并判断△DMN是怎样的特殊三角形(不要求证明);
(2)请借助图②解答:当点M在线段BF上(与点B、F不重合),其它条件不变时,(1)中的结论是否依然成立?若成立,请证明;若不成立,请说明理由;
(3)请借助图③解答:当点M在射线FC上(与点F不重合),其它条件不变时,(1)中的结论是否仍然成立?画出图形,不要求证明.
【题目】请按要求完成下面三道小题.
(1)如图1,AB=AC.这两条线段一定关于某条直线对称吗?如果是,请说明是哪条直线,并在图1中画出这条直线;如果不是,请说明理由.
(2)如图2,已知线段AB和点C.
求作线段CD,使它与AB成轴对称,且A与C是对称点,请画出图形,并简述画图过程.
(3)如图3,任意位置的两条线段AB,CD,AB=CD.你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请画出图形,并描述操作过程;如果不能,请说明理由.
【题目】如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.连接CE.求∠E的度数.
【题目】如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是( ) A. = B.AD,AE将∠BAC三等分C.△ABE≌△ACDD.S△ADH=S△CEG
【题目】如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且CE=CD,试猜想BD和AE的关系,并说明你猜想的正确性.
【题目】如图,已知BD为△ABC的角平分线,请按如下要求操作解答:
(1)过点D画DE∥BC交AB于E,若∠A=68°,∠AED=42°,求∠BDC的度数.
(2)画△ABC的角平分线CF交BD于点M,若∠A=60°,求∠CMD的度数.