【题目】数学课上,张老师举了下面的例题:
例1 等腰三角形中,,求的度数.(答案:)
例2 等腰三角形中,,求的度数.(答案:或或)
张老师启发同学们进行变式,小敏编了如下一题:
变式 等腰三角形中,,求的度数.
(1)请你解答以上的变式题.
(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围.
【题目】在如图的正方形网格中,每一个小正方形的边长为1.格点三角形(顶点是网格线交点的三角形)的顶点的坐标分别是.
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出关于轴对称的;
(3)请在轴上求作一点,使的周长最小,并写出点的坐标.
【题目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点C1、C2、C3…在x轴上,点A1、A2、A3…在直线l上,A1(0,1),∠A2 A1B1=45°,则点Bn的坐标为____________(用n的代数式表示,n为正整数);
【题目】如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.
【题目】如图,在△ABC中,AB=6,AC=10,BC边上的中线AD=4,则△ABC的面积为___________;
【题目】如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.
【题目】如图,△ABC中,AB=AC=12厘米, BC=8厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动;当点Q的运动速度为下列哪个值时,能够在某一时刻使△BPD与△CQP全等( )
A. 2或3厘米/秒 B. 4厘米/秒 C. 3厘米/秒 D. 4或6厘米/秒
【题目】某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据: =1.1, =1.2, =1.3, =1.4)
【题目】如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR,②QP∥AR,③△BPR≌△QPS中一定正确的是( )
A. 全部正确 B. 仅①和②正确 C. 仅①正确 D. 仅①和③正确
【题目】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)