【题目】要得到抛物线y=2(x+4)2﹣1,可以将抛物线y=2x2( )
A. 向左平移4个单位,再向上平移1个单位
B. 向左平移4个单位,再向下平移1个单位
C. 向右平移4个单位,再向上平移1个单位
D. 向右平移4个单位,再向下平移1个单位
【题目】体育课上,对初三(1)的学生进行了仰卧起坐的测试,以能做24个为标准,超过次数用正数来表示,不足的次数用负数来表示,其中10名女学生成绩如下:
5
-2
-1
3
0
10
7
-5
这10名女生的达标率为多少?
【题目】下列能用完全平方公式因式分解的是( )
A. x2+2xy﹣y2 B. ﹣xy+y2 C. x2﹣2xy+y2 D. x2﹣4xy+2y2
【题目】若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:与C2:为“友好抛物线”.
(1)求抛物线C2的解析式.
(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.
(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.
【题目】解方程:x2-6x+5=0
【题目】旋转不改变图形的和 .
【题目】下列各组线段的长度成比例的是( )
A. 6cm、2cm、1cm、4cm B. 4cm、5cm、6cm、7cm
C. 3cm、4cm、5cm、6cm D. 6cm、3cm、8cm、4cm
【题目】某电脑批发商第一天运进50台电脑,第二天运进-32台电脑,第三天运进40台电脑,第四天运进-29台电脑,如果运进记作正的,那么四天共运进电脑多少台?
【题目】已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是( )
A. 9㎝ B. 12㎝ C. 12㎝或15㎝ D. 15㎝
【题目】已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系. (2)若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第(1)问中EF与BE、CF间的关系还存在吗?(3)若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?