【题目】【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tanα=,求sin2α的值.
小娟是这样解决的:
如图1,在⊙O中,AB是直径,点C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα= = .
易得∠BOC=2α.设BC=x,则AC=3x,则AB=x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α== .
【问题解决】
已知,如图2,点M、N、P为圆O上的三点,且∠P=β,tanβ = ,求sin2β的值.
【题目】如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2;
(1)若点A、C的坐标分别为(-3,0)、(-2,3),请画出平面直角坐标系并指出点B的坐标;
(2)画出△ABC关于轴对称再向上平移1个单位后的图形△A1B1C1;
(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.
【题目】据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为( )
A. 1.94×1010 B. 0.194×1010 C. 19.4×109 D. 1.94×109
【题目】如图,AB是⊙O的直径,点C、D是圆上两点,且OD∥AC,OD与BC交于点E.
(1)求证:E为BC的中点;
(2)若BC=8,DE=3,求AB的长度.
【题目】一个平行四边形绕着它的对角线的交点旋转90°,能够与它本身重合,则该四边形是( )A.矩形B.菱形C.正方形D.无法确定
【题目】在ABCD中,若∠A=40°,则∠C=( )A.140°B.130°C.50°D.40°
【题目】一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是( )A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88°
【题目】观察下列算式:
21=2,22=4,23=8,24=16,25=32,26=64, 27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是 .
A
2
-4
9
-10
B
3
-7
C
6
12
63
90
【题目】若│-a│=5,则a=____________.
【题目】某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?