为了解2018年某校九年级数学质量监控情况,随机抽取40名学生的数学成绩进行分析.
成绩统计如下.
93 | 92 | 84 | 55 | 85 | 82 | 66 | 75 | 88 | 67 |
87 | 87 | 37 | 61 | 86 | 61 | 77 | 57 | 72 | 75 |
68 | 66 | 79 | 92 | 86 | 87 | 61 | 86 | 90 | 83 |
90 | 18 | 70 | 67 | 52 | 79 | 86 | 71 | 61 | 89 |
2018年某校九年级数学质量监控部分学生成绩统计表:
分数段 | x<50 | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x<100 |
人数 | 2 | 3 | 9 | 13 |
平均数、中位数、众数如下表:
统计量 | 平均数 | 中位数 | 众数 |
分值 | 74.2 | 78 | 86 |
请根据所给信息,解答下列问题:
(1)补全统计表中的数据;
(2)用统计图将2018年某校九年级数学质量监控部分学生成绩表示出来;
(3)根据以上信息,提出合理的复习建议.
如图,△ABC中,∠ACB=90°,∠A=30°,AB=6,点P是斜边AB上一点(点P不与点A,B重合),过点P作PQ⊥AB于P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y.
小明根据学习函数的经验,对函数y随自变量x的变换而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)通过取点、画图、测量、计算,得到了x与y的几组值,如下表:
x | …… | 0.8 | 1.0 | 1.4 | 2.0 | 3.0 | 4.0 | 4.5 | 4.8 | 5.0 | 5.5 | …… |
y | …… | 0.2 | 0.3 | 0.6 | 1.2 | 2.6 | 4.6 | 5.8 | 5.0 | m | 2.4 | …… |
经测量、计算,m的值是 (保留一位小数).
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合几何图形和函数图象直接写出,当QP=CQ时,x的值是 .
正方形ABCD的对角线AC,BD交于点O,作∠CBD的角平分线BE,分别交CD,OC于点E,F.
(1)依据题意,补全图形(用尺规作图,保留作图痕迹);
(2)求证:CE=CF;
(3)求证:DE=2OF.