某通讯公司推出了①②两种收费方式,收费y1,y2 (元)与通讯时间x(分钟)之间的函数关系如图所示,则使不等式成立的x的取值范围是 .
把m个练习本分给n个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为 .
解不等式:,并把解集表示在数轴上.
如图所示,客都世纪大道与梅大高速在三角地相交于点O,在∠AOB的内部有工厂C和D,现要建一个货场P,使P到OA和OB的距离相等,且使PC=PD,用尺规作出P点的位置.(不写作法,保留作图痕迹)
解不等式组:,并把解集在数轴上表示出来.
如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)、求证:AD平分∠BAC;
(2)、直接写出AB+AC与AE之间的等量关系.
已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.
(1)求每个足球和每个篮球的售价;
(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?
如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.
(1)求证:AD垂直平分EF;
(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.
如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D.
(1)∠ECD和∠EDC相等吗?说明理由.
(2)OC和OD相等吗?说明理由.
(3)OE是线段CD的垂直平分线吗?说明理由.
去冬今春,某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某镇中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)、求饮用水和蔬菜各有多少件?
(2)、现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该镇中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)、在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?