假期里,小红和小慧去买菜,三次购买的西红柿价格和数量如下表:
单价/(元/千克) | 4 | 3 | 2 | 合计 |
小红购买的数量/千克 | 1 | 2 | 3 | 6 |
小慧购买的数量/千克 | 2 | 2 | 2 | 6 |
(1)小红和小慧购买西红柿数量的中位数是 ,众数是 ;
(2)从平均价格看,谁买的西红柿要便宜些.
小亮的说法
每次购买单价相同,购买总量也相同,平均价格应该也一样,都是(4+3+2)÷3=3(元/千克),所以两人购买的西红柿一样便宜.
小明的说法
购买的总量虽然相同,但小红花了16元,小慧花了18元,平均价格不一样,所以购买的西红柿便宜
思考小亮和小明的说法,你认为谁说得对?为什么?
(3)小明在直角坐标系中画出反比例函数的图象,图象经过点P(如图),点P的横、纵坐标分别为小红和小慧购买西红柿价格的平均数.
①求此反比例函数的关系式;
②判断点Q(2,5)是否在此函数图象上.
![]()
为了解甲、乙两种车的刹车距离,经试验发现,甲车的刹车距离s甲是车速v的
,乙车的刹车距离s乙等于反应距离与制动距离之和,二反应距离与车速v成正比,制动距离与车速v2成正比,具体关系如下表:
车速v(km/h) | 40 | 50 |
刹车距离s乙(m) | 12 | 17.5 |
(1)分别求出s甲、s乙与车速v的函数关系式;
(2)若乙车在限速120km/h的高速公路上行驶,乙车的最长刹车距离是多少m?
(3)刹车速度是处理交通事故的一个重要因素,请看下面一个交通事故案例:甲、乙两车在限速为80km/g的道路上相向而行,等望见对方,同时刹车时已晚,两车还是相撞了,事后经现场勘查,测得甲车的刹车距离超过16m,但小于18m,乙车的刹车距离是24m,请你比较两车的速度,并判断哪辆车超速?