市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:
若购买A种树x棵,购树所需的总费用为y元.
(1)求y与x之间的函数关系式;
(2)若购树的总费用不超过82 000元,则购A种树不少于多少棵?
(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?
| 品种 项目 | 单价(元/棵) | 成活率 |
| A | 80 | 92% |
| B | 100 | 98% |
(1)求y与x之间的函数关系式;
(2)若购树的总费用不超过82 000元,则购A种树不少于多少棵?
(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?
红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=
t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=-
t+40(21≤t≤40且t为整数).
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
0 156737 156745 156751 156755 156761 156763 156767 156773 156775 156781 156787 156791 156793 156797 156803 156805 156811 156815 156817 156821 156823 156827 156829 156831 156832 156833 156835 156836 156837 156839 156841 156845 156847 156851 156853 156857 156863 156865 156871 156875 156877 156881 156887 156893 156895 156901 156905 156907 156913 156917 156923 156931 366461
| 时间t(天) | 1 | 3 | 6 | 10 | 36 | … |
| 日销售量m(件) | 94 | 90 | 84 | 76 | 24 | … |
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.