同学们已经认识了很多正多边形,现以正六边形为例再介绍与正多边形相关的几个概念.如正六边形ABCDEF各边对称轴的交点O,又称正六边形的中心,其中OA称正六边形的半径,通常用R表示,∠AOB称为中心角,显然.提出问题:正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
探索发现:
(1)为了解决这个问题,我们不妨从最简单的正多边形--正三角形入手.
如图①,△ABC是正三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3 ,确定h1+h2+h3的值与△ABC的半径R及中心角的关系.
解:设△ABC的边长是a,面积为S,显然S=a(h1+h2+h3
O为△ABC的中心,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos∠AOB=Rcos×120°=Rcos60°,
AM=OAsin∠AOM=Rsin∠AOB=Rsin×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=AB×OM=×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
a(h1+h2+h3)=3R2sin60°cos60°
即:×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如图②,五边形ABCDE是正五边形,半径是R,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1、h2、h3、h4、h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
(3)类比上述探索过程,直接填写结论
正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=______
正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=______
正n边形(半径是R)内任意一点P到各边距离之和  h1+h2+…+hn=______.

 0  154364  154372  154378  154382  154388  154390  154394  154400  154402  154408  154414  154418  154420  154424  154430  154432  154438  154442  154444  154448  154450  154454  154456  154458  154459  154460  154462  154463  154464  154466  154468  154472  154474  154478  154480  154484  154490  154492  154498  154502  154504  154508  154514  154520  154522  154528  154532  154534  154540  154544  154550  154558  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网