将正六边形纸片按下列要求分割(每次分割,纸片均不得有剩余):
第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;
第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;
按上述分割方法进行下去…
(1)请你在下图中画出第一次分割的示意图;
(2)若原正六边形的面积为a,请你通过操作和观察,将第1次,第2次,第3次分割后所得的正六边形的面积填入下表:
(3)观察所填表格,并结合操作,请你猜想:分割后所得的正六边形的面积S与分割次数n有何关系?(S用含a和n的代数式表示,不需要写出推理过程)
0 149276 149284 149290 149294 149300 149302 149306 149312 149314 149320 149326 149330 149332 149336 149342 149344 149350 149354 149356 149360 149362 149366 149368 149370 149371 149372 149374 149375 149376 149378 149380 149384 149386 149390 149392 149396 149402 149404 149410 149414 149416 149420 149426 149432 149434 149440 149444 149446 149452 149456 149462 149470 366461
第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;
第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;
按上述分割方法进行下去…
(1)请你在下图中画出第一次分割的示意图;
(2)若原正六边形的面积为a,请你通过操作和观察,将第1次,第2次,第3次分割后所得的正六边形的面积填入下表:
| 分割次数(n) | 1 | 2 | 3 | … |
| 正六边形的面积S |