小明为了通过描点法作出函数y=x2-x+1的图象,先取自变量x的7个值满足:
x2-x1=x3-x2=…=x7-x6=d,再分别算出对应的y值,列出表:
记m1=y2-y1,m2=y3-y2,m3=y4-y3,m4=y5-y4,…;s1=m2-m1,s2=m3-m2,s3=m4-m3,…
(1)判断s1、s2、s3之间关系,并说明理由;
(2)若将函数“y=x2-x+1”改为“y=ax2+bx+c(a≠0)”,列出表:
其他条件不变,判断s1、s2、s3之间关系,并说明理由;
(3)小明为了通过描点法作出函数y=ax2+bx+c(a≠0)的图象,列出表:
由于小明的粗心,表中有一个y值算错了,请指出算错的y值(直接写答案).
x2-x1=x3-x2=…=x7-x6=d,再分别算出对应的y值,列出表:
| x | x1 | x2 | x3 | x4 | x5 | x6 | x7 |
| y | 1 | 3 | 7 | 13 | 21 | 31 | 43 |
(1)判断s1、s2、s3之间关系,并说明理由;
(2)若将函数“y=x2-x+1”改为“y=ax2+bx+c(a≠0)”,列出表:
| x | x1 | x2 | x3 | x4 | x5 | x6 | x7 |
| y | y1 | y2 | y3 | y4 | y5 | y6 | y7 |
(3)小明为了通过描点法作出函数y=ax2+bx+c(a≠0)的图象,列出表:
| x | x1 | x2 | x3 | x4 | x5 | x6 | x7 |
| y | 10 | 50 | 110 | 190 | 290 | 412 | 550 |
(1)请在坐标系中画出二次函数y=-x2+2x的大致图象;
(2)在同一个坐标系中画出y=-x2+2x的图象向上平移两个单位后的图象;
(3)直接写出平移后的图象的解析式.
注:图中小正方形网格的边长为1.
0 145803 145811 145817 145821 145827 145829 145833 145839 145841 145847 145853 145857 145859 145863 145869 145871 145877 145881 145883 145887 145889 145893 145895 145897 145898 145899 145901 145902 145903 145905 145907 145911 145913 145917 145919 145923 145929 145931 145937 145941 145943 145947 145953 145959 145961 145967 145971 145973 145979 145983 145989 145997 366461
(2)在同一个坐标系中画出y=-x2+2x的图象向上平移两个单位后的图象;
(3)直接写出平移后的图象的解析式.
注:图中小正方形网格的边长为1.