如图,已知直线l:y=
及抛物线C:y=ax2+bx+c(a≠0),且抛物线C图象上部分点的对应值如下表:
(1)求抛物线C对应的函数解析式;
(2)求直线l与抛物线C的交点A、B的坐标;
(3)若动点M在直线l上方的抛物线C上移动,求△ABM的边AB上的高h的最大值.
0 128017 128025 128031 128035 128041 128043 128047 128053 128055 128061 128067 128071 128073 128077 128083 128085 128091 128095 128097 128101 128103 128107 128109 128111 128112 128113 128115 128116 128117 128119 128121 128125 128127 128131 128133 128137 128143 128145 128151 128155 128157 128161 128167 128173 128175 128181 128185 128187 128193 128197 128203 128211 366461
| x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
| y | … | -5 | 0 | 3 | 4 | 3 | 0 | -5 | … |
(2)求直线l与抛物线C的交点A、B的坐标;
(3)若动点M在直线l上方的抛物线C上移动,求△ABM的边AB上的高h的最大值.