连接上海市区到浦东国际机场的磁悬浮轨道全长约为30km,列车走完全程包含启动加速、匀速运行、制动减速三个阶段.已知磁悬浮列车从启动加速到稳定匀速动行共需200秒,在这段时间内记录下下列数据:
(1)请你在一次函数、二次函数和反比例函数中选择合适的函数来分别表示在加速阶段(0≤t≤200)速度υ与时间t的函数关系、路程s与时间t的函数关系.
(2)最新研究表明,此种列车的稳定动行速度可达180米/秒,为了检测稳定运行时各项指标,在列车达到这一速度后至少要运行100秒,才能收集全相关数据.若在加速过程中路程、速度随时间的变化关系仍然满足(1)中的函数关系式,并且制作减速所需路程与启动加速的路程相同.根据以上要求,至少还要再建多长轨道就能满足试验检测要求?
(3)若减速过程与加速过程完全相反.根据对问题(2)的研究,直接写出列车在试验检测过程中从启动到停车这段时间内,列车离开起点的距离y(米)与时间t(秒)的函数关系式.(不需要写出过程)
| 时间t(秒) | 50 | 100 | 150 | 200 | |
| 速度υ(米/秒) | 30 | 60 | 90 | 120 | |
| 路程x(米) | 750 | 3000 | 6750 | 12000 |
(2)最新研究表明,此种列车的稳定动行速度可达180米/秒,为了检测稳定运行时各项指标,在列车达到这一速度后至少要运行100秒,才能收集全相关数据.若在加速过程中路程、速度随时间的变化关系仍然满足(1)中的函数关系式,并且制作减速所需路程与启动加速的路程相同.根据以上要求,至少还要再建多长轨道就能满足试验检测要求?
(3)若减速过程与加速过程完全相反.根据对问题(2)的研究,直接写出列车在试验检测过程中从启动到停车这段时间内,列车离开起点的距离y(米)与时间t(秒)的函数关系式.(不需要写出过程)
我市某企业生产的一批产品上市后40天内全部售完,该企业对这一批产品上市后每天的销售情况进行了跟踪调查.表一、表二分别是国内、国外市场的日销售量y1、y2(万件)与时间t(t为整数,单位:天)的部分对应值.
表一:国内市场的日销售情况
表二:国外市场的日销售情况
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;
(2)分别探求该产品在国外市场上市30天前与30天后(含30天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;
(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式.试用所得函数关系式判断上市后第几天国内、外市场的日销售总量y最大,并求出此时的最大值.
0 127063 127071 127077 127081 127087 127089 127093 127099 127101 127107 127113 127117 127119 127123 127129 127131 127137 127141 127143 127147 127149 127153 127155 127157 127158 127159 127161 127162 127163 127165 127167 127171 127173 127177 127179 127183 127189 127191 127197 127201 127203 127207 127213 127219 127221 127227 127231 127233 127239 127243 127249 127257 366461
表一:国内市场的日销售情况
| 时间t(天) | 1 | 2 | 10 | 20 | 30 | 38 | 39 | 40 | |
| 日销售量y1(万件) | 5.85 | 11.4 | 45 | 60 | 45 | 11.4 | 5.85 |
| 时间t(天) | 1 | 2 | 3 | 25 | 29 | 30 | 31 | 32 | 33 | 39 | 40 | |
| 日销售量y2(万件) | 2 | 4 | 6 | 50 | 58 | 60 | 54 | 48 | 42 | 6 |
(2)分别探求该产品在国外市场上市30天前与30天后(含30天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;
(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式.试用所得函数关系式判断上市后第几天国内、外市场的日销售总量y最大,并求出此时的最大值.