如图10,为了测量一棵树AB的高度,测量者在D点立一高CD等于2m的标杆,现测量者从E处可以看到标杆顶点C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,求树高。
已知四边形ABCD与四边形A′B′C′D′相似,且AB:BC:CD:DA=20:15:9:8,四边形A′B′C′D′的周长为26,求四边形A′B′C′D′各边的长。
(1)若=,判断代数式-+1值的符号(2)若==,求的值。
(本题满分8分)在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为弧AD上一点,BC=AF,延长DF与BA的延长线交于E. (1)求证:△ABD为等腰三角形;(2)求证:AC·AF=DF·FE
如图所示,要设计一座1m高的抽象人物雕塑,使雕塑的上部(腰以上)AC与下部(腰以下)BC的高度比,等于下部与全部(全身)AB的高度比,雕塑的下部应设计为多高?
(12分)如图,在平面直角坐标系中,抛物线向左平移1个单位,再向下平移4个单位,得到抛物线.所得抛物线与轴交于两点(点在点的左边),与轴交于点,顶点为.(1)求的值;(2)求直线AC的函数解析式。(3)在线段上是否存在点,使与相似.若存在,求出点的坐标;若不存在,说明理由.
如图所示,将矩形沿折叠,使点恰好落在上处,以为边作正方形,延长至,使,再以、为边作矩形.(1). (2分)试比较、的大小,并说明理由.(2). (1分)令,请问是否为定值?若是,请求出的值;若不是,请说明理由.为定值.(3). (3分)在(2)的条件下,若为上一点且,抛物线经过、两点,请求出此抛物线的解析式.(4). (4分)在(3)的条件下,若抛物线与线段交于点,试问在直线上是否存在点,使得以、、为顶点的三角形与相似?若存在,请求直线与轴的交点的坐标;若不存在,请说明理由.
(本题14分)如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AD的长;(2)设CP=x, △PDQ的面积为y,求y关于x的函数表达式,并求自变量的取值范围;(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.
(本题满分14分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.⑴如图②,若M为AD边的中点,①△AEM的周长=____ _cm;②求证:EP=AE+DP;⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
在△ABC中,D为AB边上一点,过点D作DE∥BC交AC于点E,以DE为折线,将△ADE翻折,设所得的△A’DE与梯形DBCE重叠部分的面积为y.(1)如图(甲),若∠C=90°,AB=10,BC=6,,则y的值为 ;(2)如图(乙),若AB=AC=10,BC=12,D为AB中点,则y的值为 ;(3)若∠B=30°,AB=10,BC=12,设AD=x.①求y与x的函数解析式;②y是否有最大值,若有,求出y的最大值;若没有,请说明理由. 图(甲) 图(乙) 备用图