(1)如图①,PA、PB分别与⊙O相切于点A、B.求证:PA=PB.(2)如图②,过⊙O外一点P的两条直线分别与⊙O相交于点A、B和C、D.则当 时,PB=PD(不添加字母符号和辅助线,不需证明,只需填上符合题意的一个条件).
如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点 E. 求∠AEC的度数; (2). (3分) 【系统题型:作答题】 【阅卷方式:手动】求证:四边形OBEC是菱形.
如图,已知在半圆中,,,求的长度. 解:
如图,点D是⊙O直径CA的延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,弦AE与BC相交于点F,且CF=9,cos∠BFA=,求EF的长.
如图,在矩形中,,,点从开始沿折线A-B-C-D以4cm/s的速度移动,点从开始沿边以1cm/s的速度移动,如果点、分别从、同时出发,当其中一点到达时,另一点也随之停止运动。设运动时间为t(s)。⑴t为何值时,四边形为矩形?⑵如图10-20,如果和的半径都是2cm,那么t为何值时,和外切。
小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.
已知半径为R的⊙经过半径为r的⊙O的圆心,⊙O与⊙交于E、F两点. (1)如图(1),连结00'交⊙O于点C,并延长交⊙于点D,过点C作⊙O的切线交⊙于A、B两点,求OA·OB的值; (2)若点C为⊙O上一动点,①当点C运动到⊙时,如图(2),过点C作⊙O的切线交⊙,于A、B两点,则OA·OB的值与(1)中的结论相比较有无变化?请说明理由.②当点C运动到⊙外时,过点C作⊙O的切线,若能交⊙于A、B两点,如图(3),则OA·OB的值与(1)中的结论相比较有无变化?请说明理由.
(本题满分7分)如图,在⊙O中,AB是直径,AD是弦,∠ADE = 60°,∠C = 30°.(1)判断直线CD是否是⊙O的切线,并说明理由;(2)若CD = ,求BC的长.
(本题满分9分)如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O 上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.(1)求证:DC=BC; (2)若AB=5,AC=4,求tan∠DCE的值.
如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4。(1)求∠POA的度数;(2)计算弦AB的长。