题目内容

(2008•攀枝花)已知:如图,EF为梯形ABCD的中位线,AD=AN,连接DN交EF于点M,AM的延长线交BC于点H,连接DH、NH
(1)给出以下结论:
①AH⊥DN;②AD⊥DH;③HM=MN;④DH=NH
你认为正确的结论是
①④
①④

(2)请任意选择(1)中的一个正确结论加以证明.
分析:(1)①④正确;
(2)首先根据中位线的性质可得EF∥AB,进而可得△DEM∽△DAN,再根据对应边成比例可得到M为DN中点,再有AD=AN,可根据等腰三角形的性质可得AH⊥DN;再根据线段垂直平分线的性质可证出④正确.
解答:解:(1)①④正确;

(2)∵EF为梯形ABCD的中位线,
∴EF∥AB,
∴△DEM∽△DAN,
DE
DA
=
DM
DN

∵E为AD中点,
DE
AD
=
1
2

DM
DN
=
1
2

∴M为DN中点,
∵AD=AN,
∴AH⊥DN,故①正确;
∵AH⊥DN,M为DN中点,
∴HM是DN的垂直平分线,
∴DH=HN,故④正确.
点评:此题主要考查了梯形的中位线,以及等腰三角形的性质,线段的垂直平分线,关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网