题目内容

【题目】在平面直角坐标系xOy直线y=2x+l与双曲线y=的一个交点为Am-3).

1求双曲线的表达式

2过动点Pn0)(n0且垂直于x轴的直线与直线y=2x+l和双曲线y=的交点分别为BC当点B位于点C上方时直接写出n的取值范围

【答案】1y=;(2-2n0

【解析】试题分析:(1)根据点A的纵坐标利用一次函数图象上点的坐标特征,可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出双曲线的表达式;
(2)依照题意画出函数图象,根据两函数图象的上下位置关系,即可找出n的取值范围.

试题解析:

(1)当y=2x+1=-3时,x=-2,
∴点A的坐标为(-2,-3),
将点A(-2,-3)代入y= 中,
-3=,解得:k=6,
∴双曲线的表达式为y=
(2)依照题意,画出图形,如图所示.


观察函数图象,可知:当-2<x<0时,直线y=2x+1在双曲线y=的上方,
∴当点B位于点C上方时,n的取值范围为-2<n<0.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网