题目内容
关于的方程是化成一般形式后为,则,的值依次是( )
A. ,
B. ,
C. ,
D. ,
一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球
从,,,…,这个自然数中任取一个数,则它是的倍数的概率是________.
在实数内定义一种运算“*”,其定义为,根据这个定义,的解为________.
有一块长为,宽为的长方形铝片,四角各截去一个相同的边长的正方形,折合成一个没有盖的盒子,则此盒子的容积的表达式应该为
A. B.
C. D.
某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系满足:m=﹣2t+96.且未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=﹣t+40(21≤t<40且t为整数).下面我们就来研究销售这种商品的有关问题
(1)请分别写出未来40天内,前20天和后20天的日销售利润w(元)与时间t的函数关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
如图,矩形ABCD的对角线AC、BD交于点O,E为AB的中点,G为BC延长线上一点,射线EO与∠ACG的角平分线交于点F,若AB=8,BC=6,则线段EF的长为_____.
已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是( )
A. 7 B. 11 C. 12 D. 16
一元二次方程的解是( )
A. x=0 B. x=1
C. x=2 D. x=1或2