题目内容

如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于


  1. A.
    60°
  2. B.
    50°
  3. C.
    40°
  4. D.
    30°
B
分析:在等腰三角形OCB中,求得两个底角∠OBC、∠0CB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.
解答:在△OCB中,OB=OC(⊙O的半径),
∴∠OBC=∠0CB(等边对等角);
∵∠OCB=40°,∠C0B=180°-∠OBC-∠0CB,
∴∠COB=100°;
又∵∠A=∠C0B(同弧所对的圆周角是所对的圆心角的一半),
∴∠A=50°,
故选B.
点评:本题考查了圆周角定理:同弧所对的圆周角是所对的圆心角的一半.解题时,借用了等腰三角形的两个底角相等和三角形的内角和定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网