题目内容
如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].
(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.
(2)探究下列问题:
①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.
②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?
解:(1)由题意可得出:y=x2﹣2x+1=(x﹣1)2,
∴此函数图象的顶点坐标为:(1,0);
(2)①由题意可得出:y=x2+4x﹣1=(x+2)2﹣5,
∴将此函数的图象先向右平移1个单位,再向上平移1个单位后得到:y=(x+1)2﹣4=x2+2x﹣3,
∴图象对应的函数的特征数为:[2,﹣3];
②∵一个函数的特征数为[2,3],
∴函数解析式为:y=x2+2x+3=(x+1)2+2,
∵一个函数的特征数为[3,4],
∴函数解析式为:y=x2+3x+4=(x+
)2+
,
∴原函数的图象向左平移
个单位,再向下平移
个单位得到.
练习册系列答案
相关题目