题目内容

若实数a、b、c满足a2+b2+c2=9,那么代数式(a-b)2+(b-c)2+(c-a)2的最大值是______.
∵a2+b2+c2=(a+b+c)2-2ab-2ac-2bc,
∴-2ab-2ac-2bc=a2+b2+c2-(a+b+c)2
∵(a-b)2+(b-c)2+(c-a)2=2a2+2b2+2c2-2ab-2ac-2bc ②
②代入①,得(a-b)2+(b-c)2+(c-a)2
=3a2+3b2+3c2-(a+b+c)2
=3(a2+b2+c2)-(a+b+c)2
=3×9-(a+b+c)2=27-(a+b+c)2
∵(a+b+c)2≥0,
∴其值最小为0,
故原式最大值为27.
故答案为:27.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网