题目内容
已知:如图, AF平分∠BAC,BC⊥AF, 垂足为E,点D与点A关于点E对称,PB分别与线段CF, AF相交于P,M.
(1)求证:AB=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
![]()
解:(1)证明:∵AF平分∠BAC,
∴∠CAD=∠DAB=
∠BAC.
∵D与A关于E对称,∴E为AD中点.
∵BC⊥AD,∴BC为AD的中垂线,∴AC=CD.
在Rt△ACE和Rt△ABE中,注:证全等也可得到AC=CD
∠CAD+∠ACE=∠DAB+∠ABE=90°, ∠CAD=∠DAB.
∴∠ACE=∠ABE,∴AC=AB. 注:证全等也可得到AC=AB
∴AB=CD.
(2)∵∠BAC=2∠MPC, 又∵∠BAC=2∠CAD,∴∠MPC=∠CAD.
∵AC=CD,∴∠CAD=∠CDA, ∴∠MPC=∠CDA.
∴∠MPF=∠CDM.
∵AC=AB,AE⊥BC,∴CE=BE. 注:证全等也可得到CE=BE
∴AM为BC的中垂线,∴CM=BM. 注:证全等也可得到CM=BM
∵EM⊥BC,∴EM平分∠CMB,(等腰三角形三线合一)
∴∠CME=∠BME. 注:证全等也可得到∠CME=∠BME
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F(三角形内角和). 注:证三角形相似也可得到∠MCD=∠F
练习册系列答案
相关题目