题目内容
【题目】如图,在矩形
中,
,过矩形
的对角线交点
作直线分别交
、
于点
,连接
,若
是等腰三角形,则
____.
![]()
【答案】
或![]()
【解析】
连接AC,由矩形的性质得出∠B=90°,AD=BC=6,OA=OC,AD∥BC,由ASA证明△AOE≌△COF,得出AE=CF,若△AEF是等腰三角形,分三种情讨论:
①当AE=AF时,设AE=AF=CF=x,则BF=6-x,在Rt△ABF中,由勾股定理得出方程,解方程即可;
②当AF=EF时,作FG⊥AE于G,则AG=
AE=BF,设AE=CF=x,则BF=6-x,AG=
x,得出方程
x=6-x,解方程即可;
③当AE=FE时,作EH⊥BC于H,设AE=FE=CF=x,则BF=6-x,CH=DE=6-x,求出FH=CF-CH=2x-6,在Rt△EFH中,由勾股定理得出方程,方程无解;即可得出答案.
解:连接AC,如图1所示:
![]()
∵四边形ABCD是矩形,
∴∠B=90°,AD=BC=6,OA=OC,AD∥BC,
∴∠OAE=∠OCF,
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA),
∴AE=CF,若△AEF是等腰三角形,分三种情讨论:
①当AE=AF时,如图1所示:
设AE=AF=CF=x,则BF=6-x,
在Rt△ABF中,由勾股定理得:42+(6-x)2=x2,
解得:x=
,
即AE=
;
②当AF=EF时,
作FG⊥AE于G,如图2所示:
![]()
则AG=
AE=BF,
设AE=CF=x,则BF=6-x,AG=
x,
所以
x=6-x,
解得:x=4;
③当AE=FE时,作EH⊥BC于H,如图3所示:
![]()
设AE=FE=CF=x,则BF=6-x,CH=DE=6-x,
∴FH=CF-CH=x-(6-x)=2x-6,
在Rt△EFH中,由勾股定理得:42+(2x-6)2=x2,
整理得:3x2-24x+52=0,
∵△=(-24)2-4×3×52<0,
∴此方程无解;
综上所述:△AEF是等腰三角形,则AE为
或4;
故答案为:
或4.
【题目】蚌埠“一带一路”国际龙舟邀请赛期间,小青所在学校组织了一次“龙舟”故事知多少比赛,小青从全体学生中随机抽取部分同学的分数(得分取正整数,满分为100分)进行统计.以下是根据抽取同学的分数制作的不完整的频率分布表和频率分布直方图,请根据图表,回答下列问题: :
组别 | 分组 | 频数 | 频率 |
1 |
| 9 | 0.18 |
2 |
|
|
|
3 |
| 21 | 0.42 |
4 |
|
| 0.06 |
5 |
| 2 |
|
![]()
(1)根据上表填空:
__,
=. ,
= .
(2)若小青的测试成绩是抽取的同学成绩的中位数,那么小青的测试成绩在什么范围内?
(3)若规定:得分在
的为“优秀”,若小青所在学校共有600名学生,从本次比赛选取得分为“优秀”的学生参加决赛,请问共有多少名学生被选拔参加决赛?