题目内容
下列调查中,最适合采用普查方式的是( )
A.调查一批汽车的使用寿命
B.调查重庆全市市民“五•一”期间计划外出旅游
C.调查某航班的旅客是否携带了违禁物品
D.调查全国初三学生的视力情况
已知:在Rt△ABC,∠ABC=90°,∠C=60°,现将一个足够大的直角三角板的顶点P放在斜边AC上.
(1)设三角板的两直角边分别交边AB、BC于点M、N.
①当点P是AC的中点时,分别作PE⊥AB于点E,PF⊥BC于点F,得到图1,写出图中的一对全等三角形;
②在①的条件下,写出与△PEM相似的三角形,并直接写出PN与PM的数量关系.
(2)移动点P,使AP=2CP,将三角板绕点P旋转,设旋转过程中三角板的两直角边分别交边AB、BC于点M、N(PM不与边AB垂直,PN不与边BC垂直);或者三角板的两直角边分别交边AB、BC的延长线与点M、N.
③请在备用图中画出图形,判断PM与PN的数量关系,并选择其中一种图形证明你的结论;
④在③的条件下,当△PCN是等腰三角形时,若BC=3cm,则线段BN的长是 .
已知函数y=﹣x2+x+2,则当y<0时,自变量x的取值范围是( )
A.x<﹣1或x>2 B.﹣1<x<2
C.x<﹣2或x>1 D.﹣2<x<1
从﹣2,﹣1,0,1,2,3,4这7个数中任选一个数作为a的值,则使得关于x的分式方程有整数解,且关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限的概率是 .
观察下列一组图形中点的个数,其中第1个图形中共有3个点,第2个图形中共有8个点,第3个图形中共有15个点,按此规律第6个图形中共有点的个数是( )
A.42 B.48 C.56 D.72
如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.
(1)求抛物线C2的解析式.
(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.
(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.
在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外都相同,其中标有数字2的卡片比标有数字3的卡片的3倍少8张,已知从木箱中随机摸出一张标有数字1的卡片的概率是.
(1)求木箱中标有数字1的卡片的张数.
(2)求从木箱中随机摸出一张标有数字3的卡片的概率.
如图,在△ABC中,D为BC上一点,∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,试求∠DAC、∠ADC的度数.
如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm
(1)请判断DE与⊙O的位置关系,并说明理由;
(2)求图中阴影部分的面积(结果用π表示).