题目内容
【题目】平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,点E在AB上且AE:EB=1:2,点F是BC中点,过D作DP⊥AF于点P,DQ⊥CE于点Q,则DP:DQ=_______.
![]()
【答案】2
:![]()
【解析】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据三角形的面积和平行四边形的面积得出S△DEC=S△DFA=
S平行四边形ABCD,求出AF×DP=CE×DQ,设AB=3a,BC=2a,则BF=a,BE=2a,BN=
a,BM=a,FN=
a,CM=
a,求出AF=
a,CE=2
a,代入求出即可.
连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,
∵根据三角形的面积和平行四边形的面积得:S△DEC=S△DFA=
S平行四边形ABCD,
即
AF×DP=
CE×DQ,
∴AF×DP=CE×DQ,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∵∠DAB=60°,
∴∠CBN=∠DAB=60°,
∴∠BFN=∠MCB=30°,
∵AB:BC=3:2,
∴设AB=3a,BC=2a,
∵AE:EB=1:2,F是BC的中点,
∴BF=a,BE=2a,
BN=
a,BM=a,
由勾股定理得:FN=
a,CM=
a,
AF=
=
a,
CE=
=2
a,
∴
aDP=2
aDQ,
∴DP:DQ=2
:
,
故答案为:2
:
.
![]()
练习册系列答案
相关题目