题目内容
方程的根是( )
A. x=p± B. x=-p± C. x=±p+ D. x=±(p+)
如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(不与O、C重合),作AF⊥BE,垂足为G,分别交BC、OB于F、H,连接OG、CG.
(1)求证:AH=BE;
(2)∠AGO的度数是否为定值?说明理由;
(3)若∠OGC=90°,BG=,求△OGC的面积.
下列正多边形中,中心角等于内角的是( )
A. 正三角形 B. 正四边形 C. 正六边形 D. 正八边形
任意抛掷一枚均匀的骰子一次,朝上的点数小于的概率等于________.
已知实数满足,则代数式的值为________.
现有两个圆,的半径等于篮球的半径,的半径等于一个乒乓球的半径,现将两个圆的周长都增加米,则面积增加较多的圆是( )
A. B.
C. 两圆增加的面积是相同的 D. 无法确定
解下列方程:(1) (2)
已知数轴上有A、B两个点.
(1)如图1,若AB=a,M是AB的中点,C为线段AB上的一点,且,则AC= ,CB= ,MC= (用含a的代数式表示);
(2)如图2,若A、B、C三点对应的数分别为﹣40,﹣10,20.
①当A、C两点同时向左运动,同时B点向右运动,已知点A、B、C的速度分别为8个单位长度/秒、4个单位长度/秒、2个单位长度/秒,点M为线段AB的中点,点N为线段BC的中点,在B、C相遇前,在运动多少秒时恰好满足:MB=3BN.
②现有动点P、Q都从C点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到B点时,点Q才从C点出发,并以每秒3个单位长度的速度向左移动,且当点P到达A点时,点Q也停止移动(若设点P的运动时间为t).当PQ两点间的距离恰为18个单位时,求满足条件的时间t值.
设,,那么,________.