题目内容
如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=4,AD=7,则AB的长为
- A.10
- B.5

- C.2

- D.2

C
分析:设EC=x,DC=y,则直角△BCE中,x2+4y2=BE2=16,在直角△ADC中,4x2+y2=AD2=49,解方程组可求得x、y,在直角△ABC中,AB=
.
解答:设BC=x,DC=y,∠ACB=90°,
∴在直角△BCE中,CE2+BC2=x2+4y2=BE2=16
在直角△ADC中,AC2+CD2=4x2+y2=AD2=49,
解得x=
,y=1.
在直角△ABC中,AB=
=
=2
,
故选 C.
点评:本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE和直角△ADC求DC.BC的长度是解题的关键.
分析:设EC=x,DC=y,则直角△BCE中,x2+4y2=BE2=16,在直角△ADC中,4x2+y2=AD2=49,解方程组可求得x、y,在直角△ABC中,AB=
解答:设BC=x,DC=y,∠ACB=90°,
∴在直角△BCE中,CE2+BC2=x2+4y2=BE2=16
在直角△ADC中,AC2+CD2=4x2+y2=AD2=49,
解得x=
在直角△ABC中,AB=
故选 C.
点评:本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE和直角△ADC求DC.BC的长度是解题的关键.
练习册系列答案
相关题目