题目内容
已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为________.
下列图形中,是轴对称图形,但不是中心对称图形的是( )
A. B. C. D.
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五.它被记载于我国古代著名数学著作《周髀算经》中,在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图①,在矩形纸片ABCD中,AD=8 cm,AB=12 cm.
第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图③,将图②中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图④,将图③中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.
问题解决
(1)请在图②中证明四边形AEFD是正方形;
(2)请在图④中判断NF与ND′的数量关系,并加以证明;
(3)请在图④中证明△AEN是(3,4,5)型三角形.
如图,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,CE∥BD, DE∥AC , AD=2, DE=2,则四边形 OCED 的面积为( )
A. 2 B. 4 C. 4 D. 8
一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC
(1)求△ABC的面积和点C的坐标;
(2)如果在第二象限内有一点P(a,),试用含a的代数式表示四边形ABPO的面积.
(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
若函数y=有意义,则自变量x的取值范围是________.
当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为( )
A. B.
C. D.
设点P的坐标是(1+,-2+a),则点P在 ( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
已知,如上右图,动点P在函数y=(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=﹣x+1相交于点E,F,则AF•BE的值是( )
A. 4 B. 2 C. 1 D.